跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳昱廷
Yuh-tyng Chern
論文名稱: 二氧化鈦奈米管陣列光陽極之製備及其在光電化學上的應用
Preparation of Titania Nanotube Arrays Based Photoanode for Photoelectrochemical Applications
指導教授: 高憲明
Hsien-ming Kao
簡淑華
Shu-hua Chien
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 100
語文別: 中文
論文頁數: 133
中文關鍵詞: 光電水分解產氫量子點敏化太陽能電池錳摻雜硫化鎘染料敏化太陽能電池陽極氧化法二氧化鈦奈米管陣列硫化鎘
外文關鍵詞: CdS, Quantum dots sensitized solar cells, Mn-doped CdS, solar water splitting, Dye sensitized solar cells, TiO2 nanotube arrays, Anodic oxidation
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用兩次陽極氧化法製備出雙開孔二氧化鈦奈米管陣列(opened-end TiNT-array)薄膜,並將其轉移至FTO透明導電玻璃上製成電極。於進一步表面修飾後,探討此電極於染料敏化太陽能電池(DSSC)、量子點敏化太陽能電池(QDSSC)及光電水分解產氫(water splitting)等光電化學上的應用。在二氧化鈦奈米管陣列的製備上,我們結合了兩步驟的陽極氧化法與草酸之選擇性溶解脫膜後,得到獨立式的opened-end TiNT-array。本研究以此opened-end TiNT-array為電極基礎,且依不同表面修飾又分為TiNP/TiNT-array、CdS/TiNT-array及Mn-doped CdS/TiNT-array,並將其製備成FTO電極來進行後續研究。
    在染料敏化太陽能電池研究上,我們期望藉由染料吸附量的增加進而提升DSSC的光電轉換效率。在實驗中,我們改變煆燒氣氛且將二氧化鈦奈米顆粒(TiNP)沉積於TiNT-array表面,將此TiNP/TiNT-array轉移至FTO導電玻璃上,並吸附染料N719製備成DSSC電極。在AM 1.5模擬太陽光照射下(100 mW/cm2),TiNP/TiNT-array之DSSC電極可得到最佳的光電轉換效率為6.16 %,相較於未沉積TiNP之電極的光電轉換效率大幅提升47 %。其染料吸附量也從0.153 μmol/cm2增為0.193 μmol/cm2,增加了26 %。
    在量子點敏化太陽能電池及光電水分解產氫的研究上,為了擴展可見光利用率,我們利用連續離子層吸附反應法(SILAR)沉積CdS於TiNT-array表面,並探討不同煅燒溫度對CdS/TiNT-array之FTO電極應用於QDSSC及水分解光電轉換效率的影響。結果顯示,當煅燒溫度300 oC且披覆上ZnS保護層時,在量子點敏化太陽能電池及光電水分解效率的應用上可達最佳的效率表現,分別為0.72 %及5.99 %。
    為了進一步提升光電水分解產氫的效率,我們摻雜錳離子於CdS中,並成功地在TiNT-array上沉積錳摻雜硫化鎘,製成Mn-CdS/TiNT-array。將其轉移至FTO導電玻璃製備成光陽極,應用於水分解其光電轉換效率可達6.17 %,相較於同樣煅燒溫度下製得CdS/TiNT-array之效率5.27 %,有明顯提升20 %。此外藉由紫外-可見光(UV-Vis)吸收光譜及入射單光子-電子轉換效率(IPCE)量測證實了錳摻雜的確有助於增加可見光的吸收。我們進一步以電流-時間圖佐證了Mn-doped CdS中的midgap state有助於減少電子-電洞再結合機率,進而增加整體光電轉換效率。


    In this research, the preparation and surface modification of free-standing and opened-end TiO2 nanotube arrays (TiNT-array) on fluorine-doped tin oxide glass were studied for dye-sensitized solar cells (DSSCs), quantum dots-sensitized solar cells (QDSSCs) and solar water splitting. In order to prepare the free-standing opened-end TiNT-array, two-step anodization and oxalic acid treatment were conducted. After these procedures, three parts of experiments according to different ways to modify the surface of TiNT-array were as follows.
    In the application of DSSCs, the atmosphere of pre-annealing was adjusted. Furthermore TiO2 nanoparticles (TiNP) were deposited on the surface of TiNT-array to fabricate TiNP/TiNT-array. As compared to the DSSC made of bare TiNT-array, the DSSC made of TiNP/TiNT-array exhibits an enhancement in efficiency from 4.23 % to 6.16 % under AM1.5 simulated sunlight, corresponding to nearly 47% improvement. The deposited TiNP increased the surface area, leading to the larger dye adsorption. The dye adsorption fo TiNT-array and TiNP/TiNT-array were 0.153 μmol/cm2 and 0.193 μmol/cm2, respectively.
    In the application of QDSSCs and solar water splitting, CdS quantum dots were coated onto TiNT-array by SILAR method to increase the light harvesting in the visible light region. The effects of calcined temperature and passivation layer on the applications of QDSSC and solar water splitting were investigated. As a result, when CdS/TiNT-array was calcined at 300 °C, the optimum power conversion efficiency was 0.72 % in QDSSC and 5.99 % in solar water splitting.
    In order to further enhance the efficiency of water splitting, Mn2+ was doped into CdS quantum dots (Mn-CdS/TiNT-array), and then transferred the Mn-CdS/TiNT-array onto the FTO glass for water splitting photoanode. In the application of water splitting, the efficiency of 6.17% was obtained with Mn-CdS/TiNT-array, which was 20% higher than the efficiency with CdS/TiNT-array. The superior photoelectric characteristics were studied by UV-Vis absorption spectrum, photocurrent-time experiment (J-t) and incident photon-to-current conversion efficiency (IPCE) measurement. The measurement of UV-Vis absorption spectrum and incident photon-to current conversion efficiency (IPCE) shows that Mn2+ can increase the light harvesting in the visible light region. The results of photocurrent-time experiment (J-t) improved that the midgap state in Mn-doped Cds has an positive impact on electron transportation.

    目錄 摘要 i Abstract iii 謝誌 v 目錄 vi 圖目錄 ix 表目錄 xiv 一、 緒論 1 1-1 二氧化鈦奈米管陣列 2 1-1-1 二氧化鈦奈米管陣列製備方法 2 1-1-2 二氧化鈦奈米管陣列之光電化學應用 7 1-1-3 獨立式雙開口二氧化鈦奈米管陣列薄膜 10 1-2 太陽能電池簡介 17 1-3 染料敏化太陽能電池(DSSCs) 21 1-3-1 染料敏化太陽能電池簡介 21 1-3-2 DSSCs之工作原理 22 1-3-3 影響DSSCs光電轉換效率之因素探討 24 1-4 量子點敏化太陽能電池 34 1-4-1 量子點敏化太陽能電池簡介 34 1-4-3 量子點之合成及組裝 38 1-4-4 錳摻雜之量子點敏化太陽能電池 40 1-4-5 量子點敏化太陽能電池發展現況 42 1-5 光電水分解產氫之簡介及原理 45 二、 實驗方法 48 2-1 實驗儀器及藥品 48 2-2 樣品製備 50 2-2-1 DSSC光陽極 50 2-2-2 不同煅燒溫度之CdS/TiNT-array 56 2-2-3 錳摻雜之Mn-CdS/TiNT-array 59 2-3 材料特性分析 60 2-3-1 紫外光-可見光光譜 60 2-3-2 X射線繞射圖譜 60 2-3-3 場發射掃描式電子顯微鏡 61 2-3-4 能量分散式X射線能譜 62 2-3-5 高解析穿透式電子顯微鏡 62 2-4 太陽光水分解反應 63 2-4-1 水分解反應設備裝置 63 2-4-2 數據分析及特性評估 64 2-5 太陽能電池組裝及效能量測 70 2-5-1 電池組裝及效能量測設備 70 2-5-2 數據分析及特性評估 71 2-5-3 DSSC染料吸附量計算 72 三、 結果與討論 74 3-1 TiNP/TiNT-array特性探討及DSSC應用 74 3-1-1 預煆燒O2含量對TiNT-array形貌之影響 74 3-1-2 TiNP/TiNT-array材料特性鑑定 77 3-1-3 染料敏化太陽能電池測試 79 3-2 附載CdS量子點之CdS/TiNT-array及其應用 81 3-2-1 不同煅燒溫度對CdS/TiNT-array之影響 81 3-2-2 QDSSC光電轉換效率及各項參數比較 84 3-2-3 光電水分解效能測試與特性分析 86 3-3 摻雜錳之Mn-CdS/2TiNT-array光電化學特性探討 89 3-3-1 含硫離子(S2-)溶液對Mn-CdS之影響 89 3-3-2 煅燒程序對Mn-CdS性質改變之探討 92 3-3-3 不同濃度Mn-doping對CdS/2TiNT性質之改變 96 3-3-4 光電水分解轉換效率及光電化學特性探討 102 四、 結論 107 參考文獻 109

    參考文獻
    1. 呂宗昕,全面攻進奈米科技與太陽電池,天下文化(2009年)
    2. C. A. Grimes and G. K. Mor, TiO2 Nanotube Arrays: Synthesis, Properties, and Applications , Springer, New York, USA., 2009
    3. V. Zwilling, M. Aucouturier and E. D. Ceretti, “Anodic oxidation of titanium and TA6V alloy in chromic media. An electrochemical approach”, Electrochim. Acta. 45 ,pp 921-929, 1999.
    4. D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen and E. C. Dickey, “Titanium oxide nanotube arrays prepared by anodic oxidation”, J. Mater. Res.,16, pp 3331-3334, 2001.
    5. K. Shankar, G. K. Mor, A. Fitzgerald and C. A. Grimes, “Cation Effect on the Electrochemical Formation of Very High Aspect Ratio TiO2 Nanotube Arrays in Formamide−Water Mixtures”, J. Phys. Chem. C, 111, pp 21-26, 2007.
    6. X. Chen, M. Schriver, T. Suen and S. S. Mao, “Fabrication of 10 nm diameter TiO2 nanotube arrays by titanium anodization”, Thin solid films 515, pp 8511-8514, 2007.
    7. M. Paulose, H. E. Prakasam, O. K. Varghese, L. Peng, K. C. Popat, G. K. Mor, T. A. Desai, and C. A. Grimes,” TiO2 Nanotube Arrays of 1000 μm Length by Anodization of Titanium Foil:  Phenol Red Diffusion”, J. Phys. Chem. C 111, pp 14992-14997, 2007.
    8. G. K. Mor, K. Shankar, M. Paulose, O. K. Varghese and C. A. Grimes, “Enhanced Photocleavage of Water Using Titania Nanotube Arrays” , Nano Letters , 5, pp 191-195, 2005.
    9. Q. Cai, M. Paulose, O. K. Varghese and C. A. Grimes, “The Effect of Electrolyte Composition on the Fabrication of Self-Organized Titanium Oxide Nanotube Arrays by Anodic Oxidation”, J. Mater. Res., 20, pp 230-236, 2005.
    10. G. K. Mor, O. K. Varghese, M. Paulose, N. Mukherjee, C. A. Grimes, “Fabrication of tapered, conical-shaped titania nanotubes”, J. Mater. Res., 18, pp2588-2593, 2003.
    11. G. K. Mor, O. K. Varghese, M. Paulose, C. A. Grimes,“Fabrication of uniform size titanium oxide nanotubes:Impact of current density and solution conditions”, Adv. Funct. Mater., 15, pp1291-1296, 2005.
    12. J. Zhao; X. Wang; R. Chen; L. Li,“Fabrication of titanium oxide nanotube arrays by anodic oxidation”, Solid-State Commun. 134, pp 705-710, 2005.
    13. J. M. Macak, H. Tsuchiya, A. Ghicov, P. Schmuki, “Dye-sensitized anodic TiO2 nanotubes”, Electrochem. Commun. , 7, pp1133-1137, 2005.
    14. G. K Mor, K. Shankar, M. Paulose,O. K. Varghese, C. A. Grimes, “Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, Nano Lett. 6, pp215-218, 2006.
    15. M. Paulose, K. Shankar, O. K. Varghese, G. K. Mor, B. Hardin, “Backside Illuminated Dye-sensitized Solar Cells Based on Titania Nanotube Array Electrodes”, Nanotechnology , 17, pp1446-1448, 2006.
    16. C. A. Grimes, “Synthesis and application of highly ordered arrays of TiO2 nanotubes”, J. Mater. Chem., 17, pp1451-1457, 2007.
    17. C. J. Lin, W. Y. Yu, S. H. Chien, “Rough Conical-Shaped TiO2 Nanotube Arrays for Flexible Back-Illuminated Dye-Sensitized Solar Cells”, Appl. Phys. Lett., 93, pp 133107-133109, 2008.
    18. K. Zhu, N. R. Neale, A. Miedaner, A. J. Frank, “Enhanced Charge- Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays”, Nano Lett., 7, pp 69-74, 2007.
    19. M. Paulose, K. Shankar, O. K Varghese, G. K. Mor, C. A. Grimes, “Application of Highly-Ordered TiO2 Nanotube-Arrays in Heterojunction Dye-Sensitized Solar Cells”, J. Phys. D: Appl. Phys., 39, pp 2498-2503, 2006.
    20. J. H. Park, T. W. Lee and M. G. Kang, “Growth, detachment and transfer of highly-ordered TiO2 nanotube arrays: use in dye-sensitized solar cells“, Chem. Commun., pp 2867-2869, 2008.
    21. Q. W. Chen and D. S. Xu, “Large-Scale, Noncurling, and Free- Standing Crystallized TiO2 Nanotube Arrays for Dye- Sensitized Solar Cells”, J. Phys. Chem. C , 113, pp 6310-6314, 2009.
    22. C. J. Lin, W. Y. Yu, Y. T. Lu, S. H. Chien, “Fabrication of Opened- End High-Aspect-Ratio Anodic TiO2 Nanotube Film for Photocatalytic and Photoelectrocatalytic Applications,” Chem. Commun. , pp 6031-6033, 2008.
    23. C. J. Lin, W. Y. Yu and S. H. Chien, “Transparent electrodes of ordered opened-end TiO2-nanotube arrays for highly efficient dye- sensitized solar cells”, J. Mater. Chem., 20, pp 1073–1077, 2010.
    24. http://zh.wikipedia.org/wiki/File:Solar_Spectrum.png
    25. http://en.wikipedia.org/wiki/File:PVeff(rev100921).jpg
    26. H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, “Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell”, Nature, 261, pp 402-403, 1976.
    27. B. O’Regan, M. Gratzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films”, Nature , 353, pp 737-740, 1991.
    28. Y. Chiba, A. Islam, Y. Watanabe, R. Komiya, N. Koide, L. Y. Han, “Dye-sensitized solar cells with conversion efficiency of 11.1%”, Jpn. J. Appl. Phys., 25, pp 638-649, 2006.
    29. M. Gratzel, “Photoelectrochemical cells”, Nature , 414, pp 338-344, 2001.
    30. M. Gratzel, “Solar energy conversion by dye-sensitized photovoltaic cells”, Inorg. Chem., 44, pp 6841-6851, 2005.
    31. M. Gratzel, “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells”, J. Photochem. Photobio. A , 164, pp 3-14, 2004.
    32. Md. K. Nazeeruddin, R. Humphry-Baker, P. Liska, M. Gratzel﹐“Investigation of sensitizer adsorption and the influence of protons on current and voltagen of a dye-sensitized nanocrystalline TiO2 solar cell”, J. Phys. Chem. B,107 , pp 8981-8987, 2003.
    33. Md. K. Nazeeruddin, P. Pechy, T. Renouard, S. M. Zakeeruddin, R. Humphry-Baker, P. Comte, P. Liska, L. Cevey, E. Costa, V. Shklover, L. Spiccia, G. B. Deacon, C. A. Bignozzi, M. Gratzel, “Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells”, J. Am. Chem. Soc. 123, pp 1613-1624, 2001.
    34. C. Y. Chen, M. k. Wang, J. Y. Li, N. Pootrakulchote, L. Alibabaei, C. h. Ngoc-le, J. D. Decoppet, J. H. Tsai, C. Gratzel, C. G. Wu, S. M. Zakeeruddin and M. Gratzel, “Highly Efficient Light- Harvesting Ruthenium Sensitizer for Thin-Film Dye-Sensitized Solar Cells”, ACS Nano., 3, pp 3103–3109, 2009.
    35. A. Yella, H. W. Lee, Hoi Nok Tsao, C. Yi, A. K. Chandiran, Md.K. Nazeeruddin, Eric Wei-Guang Diau, Chen-Yu Yeh, Shaik M Zakeeruddin, Michael Gratzel, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III) – Based Redox Electrolyte Exceed 12 Percent Efficiency”, Science , 334, pp 629-634, 2011.
    36. Y. Ohsaki, N. Masaki, T. Kitamura, Y. Wada, T. Okamoto, T. Sekino, K. Niihara and S. Yanagida “Dye-sensitized TiO2 nanotube solar cells: fabrication and electronic characterization”, Phys. Chem. Chem. Phys., 7, pp 4157-4163, 2005.
    37. Y. Suzuki, S. Ngamsinlapasathian, R. Yoshida, S. Yoshikawa, “Partially nanowire-structured TiO2 electrode for dye-sensitized solar cells”, Cent. Eur. J. Chem., 4, pp476-488, 2006.
    38. H. Horiuchi, R. Katoh, K. Hara, M. Yanagida, S. Murata, H. Arakawa and M. Tachiya “Electron Injection Efficiency from Excited N3 into Nanocrystalline ZnO Films: Effect of (N3−Zn2+) Aggregate Formation”, J. Phys. Chem. B, 107, pp 2570-2574, 2003.
    39. M. Gratzel﹐“Perspectives for dye-sensitized nanocrystalline solar cells”, Prog. Photovolt. Res. Appl., 8, pp 171-185, 2000.
    40. Z. Yang, C. Y. Chen, P. Roy, H. T. Chang, “ Quantum dot-sensitized solar cells incorporating nanomaterials ” Chem. Commun., 47, pp 9561-9571, 2011
    41. A. J. Nozik, M. C. Beard, J. M. Luther, M. Law, R. J. Ellingson, and J. C. Johnson, “Semiconductor Quantum Dots and Quantum Dot Arrays and Applications of Multiple Exciton Generation to Third-Generation Photovoltaic Solar Cells” Chem. Rev., 110, pp 6873–6890, 2010.
    42. T. Takagahara and K. Takeda , “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials” Phys. Rev. B 46, pp 15578–15581, 1992.
    43. M. A. Green, Third Generation PhotoVoltaics, Bridge Printery: Sydney, Australia, 2001.
    44. R. Sven, S. Menny, and Z. Arie, “Quantum-Dot-Sensitized Solar Cells”, ChemPhysChem , 11, pp 2290 – 2304, 2010.
    45. A. Martı’, A. Luque, Next Generation PhotoVoltaics: High Efficiency through Full Spec-trum Utilization,Taylor and Francis, UK, 2003.
    46. O. I. Mic’ic’, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, and A. J. Nozik, “Size-Dependent Spectroscopy of InP Quantum Dots” J. Phys. Chem. B , 101, pp 4904-4912, 1997.
    47. H. M. Pathan and C. D. Lokhande, “Deposition of metal chalcogenide thin films by successive ionic layer adsorption and reaction (SILAR) method”, Bull. Mater. Sci. , 27, pp 85-111, 2004.
    48. H. Y. Chen, S. Maiti, and D. H. Son, “Doping Location-Dependent Energy Transfer Dynamics in Mn-Doped CdS/ZnS Nanocrystals”, ACS Nano, 6, pp 583–591, 2012.
    49. R. Beaulac, L. Schneider, P. I. Archer, G. Bacher, and D. R. Gamelin, “Light-Induced Spontaneous Magnetization in Doped Colloidal Quantum Dots. ”, Science , 325, pp 973–976, 2009.
    50. R. Beaulac, P. I. Archer, S. T. Ochsenbein, and D. R. Gamelin, ”Mn2+-Doped CdSe Quantum Dots: New Inorganic Materials for Spin-Electronics and Spin-Photonics.”, Adv. Funct.Mater. , 18, pp 3873–3891, 2008.
    51. D. Magana, S. C. Perera, A. G. Harter, N. S. Dalal, and G. F. Strouse, “Switching-on Superparamagnetism in Mn/CdSe Quantum Dots.”, J. Am. Chem. Soc. , 128, pp 2931–2939, 2006.
    52. P. K. Santra, and P. V. Kamat, “Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%”, J. Am. Chem .Soc. , 134, pp 2508−2511, 2012
    53. J. Zhang, L. Sun, C. Liao and C. Yan, “Size control and photoluminescence enhancement of CdS nanoparticles prepared via reverse micelle method”, Solid State Commun., 124, pp 45-48, 2002.
    54. I. Robel, V. Subramanian, M. Kuno and P. V. Kamat, “Quantum Dot Solar Cells. Harvesting Light Energy with CdSe Nanocrystals Molecularly Linked to Mesoscopic TiO2 Films”, J. Am. Chem. Soc., 128, pp 2385-2393, 2006.
    55. R. D. Schaller and V. I. Klimov, “High Efficiency Carrier Multiplication in PbSe Nanocrystals: Implications for Solar Energy Conversion”, Phys. Rev. Lett., 92, pp186601-186604, 2004.
    56. R. Plass, S. Pelet, J. Krueger and M. Gratzel, “Quantum Dot Sensitization of Organic-Inorganic Hybrid Solar Cells”, J. Phys. Chem. B, 106, pp 7578-7580, 2002.
    57. S. A. Mcdonald, G. Konstantatos, S. Zhang, P. W. Cyr, E. J. D. Klem, L. Levina and E. H. Sargrnt, “Solution-processed PbS quantum dot infrared photodetectors and photovoltaics”, Nat. Mater., 4, pp 138-142, 2005.
    58. A. Kongkanand, K. Tvrdy, K. Takechi, M. Kuno, and P. V. Kamat, “Quantum Dot Solar Cells. Tuning Photoresponse through Size and Shape Control of CdSe-TiO2 Architecture”, J. Am. Chem. Soc. , 130, pp 4007-4015, 2008.
    59. Y. Tachibana, S. A. Haque, I. P. Mercer, J. E. Moser, D. R. Klug and J. R. Durrant, “Modulation of the Rate of Electron Injection in Dye-Sensitized Nanocrystalline TiO2 Films by Externally Applied Bias”, J. Phys. Chem. B , 105, pp 7424-7431, 2001.
    60. O. Niitsoo, S. K. Sarkar, C. Pejoux, S. Ruhle, D. Cahen and G. Hodes, “Chemical bath deposited CdS/CdSe-sensitized porous TiO2 solar cells”, J PHOTOCH PHOTOBIO A, 181, pp 306-313, 2006.
    61. Y. Tian and T. Tatsuma, “Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO2 Films Loaded with Gold Nanoparticles”, J. Am. Chem. Soc. , 127, pp7632-7637, 2005.
    62. A. Fujishima, K. Honda, “Electrochemical photolysis of water at a semiconductor electrode”, Nature , 238, pp 37-38, 1972.
    63. C. A. Grimes, O. K. Varghese and S. Ranjan, Light, Water, Hydrogen, Springer, New York, USA, 2008.
    64. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, “Titanium dioxide for solar-hydrogen I. Functional properties”, Int. J. Hydrogen Energy , 32, pp 2609-2629, 2007.
    65. S. Ito, P. Liska, P. Comte, R. Charvet, P. Pechy, U. Bach, L. Schmidt-Mende, S. M. Zakeeruddin, A. Kay, M. K. Nazeeruddin, M. Gratzel, “Control of Dark Current in Photoelectrochemical (TiO2/I--I3-) and Dye-Sensitized Solar Cells”, Chem. Commun., pp 4351-4353, 2005.
    66. C. J. Barbe, F. Arendse, P. Comte, M. Jirousek, F. Lenzmann, V. Shklover, M. Gratzel, “Nanocrystalline Titanium Oxide Electrodes for Photovoltaic Applications”, J. Am. Ceram. Soc. , 80, pp 3157-3171, 1997.
    67. 陳嘉祥,「二氧化鈦奈米管陣列製備及其在光電化學上的應用」,國立中央大學化學系,碩士論文,中壢,2011。
    68. N. Vlachopoulos, P. Liska, J. Augustynski, M. Gratzel, “Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films”, J. Am. Chem. Soc. , 110, pp 1216-1220, 1988.
    69. 蕭光宏,「二氧化鈦微結構對染料敏化太陽能電池光電效能的影響」,國立台灣大學化學系,碩士論文,台北,2008。
    70. M. Paulose, G. K. Mor, C. A. Grimes, “Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays”, J PHOTOCH PHOTOBIO A , 178, pp 8-15, 2006.
    71. M. K. Nazeeruddin, A. Kay, I. Rodicio, R. Humphry-Baker, E. Mueller, P. Liska, N. Vlachopoulos, and M. Gratzel, “Conversion of Light to Electricity by cis-X2bis(2,2''-bipyridyl-4,4''-dicarboxylate) ruthenium(II) Charge-Transfer Sensitizers X = Cl-, Br-, I-, CN-, and SCN- on Nanocrystalline Titanium Dioxide Electrodes”, J. Am. Chem. Soc. , 115, pp 6382-6390, 1993.

    QR CODE
    :::