跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝昀霖
Chaos Xie
論文名稱: 偵測變異的多變量管制圖之研究
指導教授: 王丕承
PC Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 工業管理研究所
Graduate Institute of Industrial Management
畢業學年度: 93
語文別: 中文
論文頁數: 63
中文關鍵詞: 多變量管制圖變異源
外文關鍵詞: Control Chart, out of control, Multivariate
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於製程日趨複雜,需要管制的品質特性也越來越多,而且通常品質特性之間都會有相關性,所以利用單變量管制圖做個別的監控容易產生誤判的機會,故多變量管制圖應運而生。
    利用多變量管制圖作管制,會有一個運用上的問題,也就是當多變量管制圖出現警訊時,無法確定是那一個或那一些品質特性出現了問題。這個問題在偵測目標的多變量管制圖已經有一有效的方法,Mason,Tracy and Young(1995)提出利用出現警訊時的Hotelling’s T2做分解,去檢視是那些品質特性出了問題。
    但是在偵測變異的多變量管制圖尚無一明確的方法來解決此問題。故我們利用Tang and Barnett(1996a)中變異數矩陣分解和Mason,Tracy and Young(1995)的作法之概念,將樣本變異數矩陣的行列式值作分解,再利用分解後的統計量來判斷是那一個或那一些品質特性出現了問題。


    摘要...................................................................... I 目錄..................................................................... II 圖目錄.................................................................. III 表目錄................................................................... IV 第一章 緒論............................................................... 1 第二章 多變量管制圖....................................................... 7 2. 1 W 管制圖............................................................ 13 2. 2 S 管制圖............................................................ 14 2. 3 S 管制圖............................................................ 15 2. 4 實例................................................................ 17 2. 5 其他相關的研究...................................................... 23 第三章 研究變異數多變量管制圖的變異源.................................... 33 3. 1 變異數的多變量統計量之分解.......................................... 33 3. 2 分解後統計量的判斷準則.............................................. 35 3. 3 實例................................................................ 40 3. 4 建議探討變異源的步驟................................................ 43 3. 5 確認分解後統計量分佈................................................ 46 第四章 結論與未來展望.................................................... 55 4. 1 結論................................................................ 55 4. 2 未來展望............................................................ 56 參 考 文 獻.............................................................. 58

    李俊霖(1997)「二元Shewhart管制法則之研究與應用─針對多變量特性之製程」,碩士論文,國立台灣大學工業工程學研究所。
    葉珮甄(1998)「多變量統計製程管制 應用在具有多種變異來源的製程上─以半導體製程為例」,碩士論文,國立臺灣大學工業工程學研究所。
    王亞倫(1999)「診斷多變量管製圖之研究」,碩士論文,國立中央大學工業管理研究所。
    顏家鈴(2001)「監控多變量製程變異性增加之管制圖」,碩士論文,國立交通大學統計所。
    吳建瑋(2001)「監控單一觀測值之多變量製程變異性管制圖」,碩士論文,國立清華大學統計學研究所。
    吳政儀(2001)「在單一觀測值下監控多變量製程變異性之EWMA管制圖」,碩士論文,國立清華大學統計學研究所。
    游明新(2002)「多變量管制圖之比較與探討」,碩士論文,雲林科技大學工業工程與管理研究所。
    黃立芬(2002)「監控多變量製程變異性增加之EWMA管制圖」,碩士論文,國立交通大學統計所。
    蘇俊虢(2003)「非常態性對T2管制圖的效應評估」,碩士論文,中原大學工業工程研究所。
    Alt, F.B. (1985). Multivariate Quality Control, The Encyclopedia of Statistical Sciences, Kotz S., Johnson, N. L. and Read, C. R. (eds), John Wiley & Sons, New York.
    Alt, F. B. and Smith, N. D. (1988). Multivariate Process Control, Handbook of Statistics, P. R. Krishnaiah and C. R. Rao (eds), North-Holland: Elsevier Science Publishers B.V., 7.
    Anderson, T. W. (1984). An Introduction to Multivariate Statistical Analysis,
    2th edition, John Wiley & Sons, New York.
    Aparisi, F.; Jabaloyes, J. and Carrion, A. (1999). “Statistical Properties of
    the S Multivariate Control Chart”. Communications in Statistics -
    Theory and Methods, 28(11), pp.2671-2686.
    Aparisi, F.; Jabaloyes, J. and Carrion, A. (2001). “Generalized Variance
    Chart Design with Adaptive Sample Sizes. The Bivariate Case”.
    Communications in Statistics - Simulation and Computation, 30(4), pp.
    931-948.
    Champ, C. W. and Chou, S. P. (2003). “Comparisons of Standard and
    Individuals Limits Phase I Shewhart X , R and S Charts”. Quality
    and Reliability Engineering International, 19(2), pp. 161-170.
    Chang, T. C. and Gan, F. F. (1995). “A Cumulative Sum Control Chart for
    Monitoring Process Variance”. Journal of Quality Technology, 27(2),
    pp. 109-119.
    Crosier, R. B. (1988). “Multivariate Generalizations of Cumulative Sum
    Quality-Control Schemes”. Technometrics, 30(3), pp. 291-303.
    Crowder, S. V. and Hamilton, M. (1992). “An EWMA for Monitoring a
    Standard Deviation”. Journal of Quality Technology, 24(1), pp. 12-21.
    Djauhari, M. A. (2005). “Improved Monitoring of Multivariate Process
    Variability”. Journal of Quality Technology, 37(1), pp. 32-39.
    Domangue, R. and Patch, S. C. (1991). “Some Omnibus Exponentially
    Weighted Moving Average Statistical Process Monitoring Schemes”.
    Technometrics, 33(3), pp. 299-313.
    Grigoryan, A. and He, D. (2005). “Multivariate double sampling S charts for
    controlling process variability”. International Journal of Production
    Research, 43(4), pp. 715-730.
    Hawkins, D. M. and Olwell, D. H. (1998). Cumulative Sum Charts and
    Charting for Quality Improvement, Springer Verlag, New York.
    Healy, J. D. (1987). “A Note on Multivariate CUSUM Procedures”.
    Technometrics, 29(4), pp. 409-412.
    Khoo, B. C. and Quah, S. H. (2003). “Multivariate Control Chart for Process
    Dispersion Based on Individual Observations”. Quality Engineering,
    15(4), pp. 639-642.
    Klein, M. (2000). “Modified S-Charts for Controlling Process Variability”.
    Communications in Statistics - Simulation and Computation, 29(3), pp.
    919-940.
    Lowry, C. A. ; Champ, C. W., and Woodall, W. H. (1995). “The
    Performance of Control Charts for Monitoring Process Variation”.
    Communications in Statistics – Simulation and Computation, 24(1-2),
    pp. 409-437.
    Lowry, C. A.; Woodall, W. H.; Champ, C. W. and Rigdon, S. E. (1992). “A
    Multivariate EWMA Control Chart”. Technometrics, 34(1), pp. 46-53.
    Lucas, J. M. and Saccucci, M. S. (1990). “Exponentially Weighted Moving
    Average Control Schemes: Properties and Enhancements”.
    Technometrics, 32(1), pp. 1-12.
    MacGregor, J. F. and Harris, T. J. (1993). “The Exponentially Weighted
    Moving Variance”. Journal of Quality Technology, 25(2), pp. 106-118.
    Mason, R. L.; Chou, Y. M.; Sullivan, J. H.; Stoumbos, Z. G. and Young, J. C.
    (2003). “Systematic Patterns in T2 Charts”. Journal of Quality
    Technology, 35(1), pp.47-58.
    Mason, R. L.; Chou, Y. M. and Young, J. C. (2001). “Applying Hotelling’s
    T2 statistic to Batch Processes”. Journal of Quality Technology, 33(4),
    pp. 466-479.
    Mason, R. L.; Tracy, N. D. and Young, J. C. (1995). “Decomposition for
    Multivariate Control Chart Interpretation”. Journal of Quality
    Technology, 27(2), pp. 99-108.
    Mason, R. L.; Tracy, N. D. and Young, J. C. (1997). “A Practical Approach
    for Interpreting Multivariate T2 Control Chart Signals”. Journal of
    Quality Technology, 29(4), pp. 396-406.
    Mason, R. L.; Tracy, N. D. and Young, J. C. (1999). “Improving the
    Sensitivity of the T2 Statistic in Multivariate Process Control”. Journal
    of Quality Technology, 31(2), pp. 155-165.
    McKay, R. J. (1989). “Simultaneous procedures for covariance matrices”.
    Communications in Statistics - Theory and Methods, 18(2), pp.
    429-443.
    Montgomery, D. C. (2001). Introduction to Statistical Quality Control, 4th
    Edition. John Wiley & Sons, New York.
    Pignatiello, J. J. and Runger, G. C. (1990). “Comparisons of Multivariate
    CUSUM Charts”. Journal of Quality Technology, 22(3), pp. 173-186.
    Prabhu, S. S. and Runger, G. C. (1997). “Designing a Multivariate EWMA
    Control Chart”. Journal of Quality Technology, 29(1), pp. 8-15.
    Reynolds, M. R.; Amin, R. W.; Arnold, J. C. and Nachlas, J. A. (1988). “ X
    Charts with Variable Sampling Intervals”. Technometrics, 30(2), pp.
    181-192.
    Roes, K. C. B., Does, R. J. M. M. and Schuring, Y. (1993). “Shewhart-type
    Control Charts for Individual Observations”. Journal of Quality
    Technology, 25(3), pp. 188-198.
    Runger, G. C.; Keats, J. B.; Montgomery, D. C. and Scranton, R. D. (1999).
    “Improving the Performance of the Multivariate EWMA Control
    Chart”. Quality and Reliability Engineering International, 15(3), pp.
    161-166.
    Sim, C. H. (2000). “S-Chart for Non-Gaussian Variables”. Journal of
    Statistical Computation and Simulation, 65(2), pp. 147-156.
    Srivastava, M. S. (1997). “CUSUM procedure for Monitoring Variability”.
    Communications in Statistics - Theory and Methods, 26(12), pp.
    2905-2926.
    Steiner, S. H. (1999). “EWMA Control Charts with Time-Varying Control
    Limits and Fast Initial Response”. Journal of Quality Technology, 31(1),
    pp. 75-86.
    Sullivan, J. H. and Woodall, W.H. (1996a). “A Control Chart for
    Preliminary Analysis of Individual Operations”. Journal of Quality
    Technology, 28(3), pp. 265-278.
    Sullivan, J. H. and Woodall, W. H. (1996b). “A Comparison of Multivariate
    Control Charts for Individual Observations”. Journal of Quality
    Technology, 28 (4), pp. 398-408.
    Tang, P. F. and Barnett, N. S. (1996a). “Dispersion Control for Multivariate
    Processes”. The Australian Journal of Statistics, 38(3), pp. 235-251.
    Tang, P. F. and Barnett, N. S. (1996b). “Dispersion Control for Multivariate
    Processes- some comparisons”. The Australian Journal of Statistics,
    38(3), pp. 253-273.
    Tracy, N. D.; Young, J. C. and Mason, R. L. (1992). “Multivariate Control
    Charts for Individual Observations”. Journal of Quality Technology,
    24(2), pp. 88-95.
    Tsung, F. and Apley, D. W. (2002). “The dynamic T2 Chart for monitoring
    feedback - controlled processes”. IIE Transactions, 34(12), pp.
    1043-1053.
    Vargas, J. A. (2003). “Robust Estimation in Multivariate Control Charts for
    Individual Observations”. Journal of Quality Technology, 35(4), pp.
    367-376.
    Woodall, W. H. (1997). “Control Charts Based on Attribute Data:
    Bibliography and Review”. Journal of Quality Technology, 29(2), pp.
    172-183.
    Woodall, W. H. and Ncube, M. M. (1985). “Multivariate CUSUM Quality
    Control Procedures”. Technometrics, 27(3), pp. 285-292.

    QR CODE
    :::