| 研究生: |
張中和 Chung-ho Chang |
|---|---|
| 論文名稱: |
策略群組規劃方法之評比 Comparison on Grouping Methods of Strategy Factors |
| 指導教授: |
薛義誠
Yih-chearng Shiue |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 資訊管理學系 Department of Information Management |
| 論文出版年: | 2014 |
| 畢業學年度: | 102 |
| 語文別: | 中文 |
| 論文頁數: | 90 |
| 中文關鍵詞: | SWOT分析 、TF-IDF 、資源分類程序 、資訊檢索 、網路分群法 |
| 外文關鍵詞: | SWOT analysis, TF-IDF, Resource Classification Process, Information Retrieval, Network Clustering |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在進行策略規劃時,最常用之方法為SWOT分析。然而,此種作法先天上將多元策略因子搭配之可能性捨棄,限制了創造力,恐造成決策的偏狹。
因此,以資訊檢索為基礎,綜合網路分群等數學方法發展新的策略群組規劃方法與SWOT分析比較。並運用在現有之相互作用矩陣上實際演示新方法與SWOT分析不同之處。
成功運用資訊檢索技術發展出策略因子關係指數矩陣,加入時間因素之考量,讓策略因子關係之判斷能夠更為全面,順利運用於網路分群法中。群組結果相較於SWOT分析具備多元策略因子搭配之可能性,因而能有效擴展決策視野;利用文件資料庫作為補助工具,能夠超越SWOT分析加諸於個人主觀之認知,因此增進了創造力;並在分群結果中發掘出新的策略組合。
When conducting strategy planning, the most popular way is SWOT analysis. However, SWOT method abandons the possibility of grouping multiple strategy factors in advance, limits creativity of strategy forming, and narrows the vision of decision.
Hence, based on many mathematical methods, i.e. information retrieval tech-nologies and network clustering methods, new grouping methods of strategy factors are going to be developed and be compared to SWOT analysis on performance by using the existing interacting matrices for demonstration.
The strategy factor index matrix has been successfully built. Time is taken as an element into account, makes the evaluation of relationship of strategy factors more comprehensively, and is applied to network clustering methods smoothly. The results of strategy factors grouping have a potential of multi-factor assembling compared to SWOT analysis and a capability that can help expanding vision of decision. The utilizing of document database as assistance of forming the matrix makes the clustering methods transcend SWOT analysis on the classification of strategy factors relied on personal cognition. Therefore, it enhances the creativity. And, it is found that in the strategy factor groups, there are some new combinations when using those new methods.
英文部分
Aggarwal, C. C. (2011). An introduction to social network data analytics (pp. 1-15). Springer US.
Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern information retrieval (Vol. 735). New York: ACM press.
Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of management, 17(1), 99-120.
Bavelas, A. (1948). A mathematical model for group structures. Human organization, 7(3), 16-30.
Boehmer, E., Masumeci, J., & Poulsen, A. B. (1991). Event-study methodology under conditions of event-induced variance. Journal of financial economics, 30(2), 253-272.
Bohner, S. A. (1996). Software change impact analysis.
Bollobás, B. (2004). Extremal graph theory. Courier Dover publications.
Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: Laws, generators, and algo-rithms. ACM computing surveys (CSUR), 38(1), 2.
Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical review E, 70(6), 066111.
Dhillon, I. S., Guan, Y., & Kulis, B. (2007). Weighted graph cuts without eigenvectors a multilevel approach. IEEE Pattern analysis and machine intelligence, 29(11), 1944-1957.
Diestel, R. (2005). Graph theory (3rd ed'n).
Freeman, L. C. (1977). A set of measures of centrality based on betweenness. So-ciometry, 35-41.
Golub, G. H., & Reinsch, C. (1970). Singular value decomposition and least squares solutions. Numerische mathematik, 14(5), 403-420.
Hill, T., & Westbrook, R. (1997). SWOT analysis: it's time for a product recall. Long range planning, 30(1), 46-52
Hoory, S., Linial, N., & Wigderson, A. (2006). Expander graphs and their applications. Bulletin of the American mathematical society, 43(4), 439-561.
Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1), 11-21.
Kannan, R., Vempala, S., & Vetta, A. (2004). On clusterings: good, bad and spectral. Journal of the ACM (JACM), 51(3), 497-515.
Keen, P. G. (1981). Value analysis: justifying decision support systems. MIS quarterly, 5(1).
Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell system technical journal, 49(2), 291-307.
Leskovec, J., Lang, K. J., & Mahoney, M. (2010, April). Empirical comparison of al-gorithms for network community detection. In proceedings of the 19th inter-national conference on world wide web (pp. 631-640). ACM.
Lu, Z., Wen, Y., & Cao, G. (2013, March). Community detection in weighted networks: Algorithms and applications. In pervasive computing and communications (PerCom), 2013 IEEE international conference on (pp. 179-184). IEEE.
Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary information. IBM journal of research and development, 1(4), 309-317.
Mintzberg, H., Ahlstrand, B., & Lampel, J. (2005). Strategy safari: a guided tour through the wilds of strategic management. Simon and schuster.
Multigraph. (2010). In Wikipedia, the free encyclopedia. Retrieved june 12, 2014, from http://commons.wikimedia.org/wiki/File:Multi-pseudograph.svg
Newman, M. E. (2003). Mixing patterns in networks. Physical review E, 67(2), 026126.
Newman, M. E. (2004a). Analysis of weighted networks. Physical review E, 70(5), 056131.
Newman, M. E., & Girvan, M. (2004b). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113.
Newman, M. (2010). Networks: an introduction. Oxford university press.
Onnela, J. P., Saramäki, J., Hyvönen, J., Szabó, G., De Menezes, M. A., Kaski, K., ... & Kertész, J. (2007). Analysis of a large-scale weighted network of one-to-one human communication. New journal of physics, 9(6), 179.
Saaty, T. L. (1988). What is the analytic hierarchy process? (pp. 109-121). Springer Berlin Heidelberg.
Salton, G., & Yang, C. S. (1973). On the specification of term values in automatic indexing. Journal of documentation, 29(4), 351-372.
Sherlock, R. A. (1979). Analysis of the behaviour of Kauffman binary networks—I. State space description and the distribution of limit cycle lengths. Bulletin of mathematical biology, 41(5), 687-705.
Sun, Y., Danila, B., Josic, K., & Bassler, K. E. (2009). Improved community structure detection using a modified fine-tuning strategy. EPL (europhysics letters), 86(2), 28004.
Wakita, K., & Tsurumi, T. (2007, May). Finding community structure in mega-scale social networks. In proceedings of the 16th international conference on world wide web (pp. 1275-1276). ACM.
Weihrich, H. (1982). The TOWS matrix—A tool for situational analysis. Long range planning, 15(2), 54-66.
Weihrich, H. (1993). Daimler-Benz's move towards the next century with the TOWS Matrix. European business review, 93(1).
Wu, Z., & Leahy, R. (1993). An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Pattern analysis and machine intelligence, IEEE transactions on, 15(11), 1101-1113.
Zipf, G. K. (1932). Selected studies of the principle of relative frequency in language.
中文部分
薛義誠. (2008). 策略規劃與管理. 雙葉書廊.
陳宏麟. (1998). 有限圖的直徑問題. 中央大學數學研究所碩士班學位論文, 1-26.