跳到主要內容

簡易檢索 / 詳目顯示

研究生: 張中和
Chung-ho Chang
論文名稱: 策略群組規劃方法之評比
Comparison on Grouping Methods of Strategy Factors
指導教授: 薛義誠
Yih-chearng Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 資訊管理學系
Department of Information Management
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 90
中文關鍵詞: SWOT分析TF-IDF資源分類程序資訊檢索網路分群法
外文關鍵詞: SWOT analysis, TF-IDF, Resource Classification Process, Information Retrieval, Network Clustering
相關次數: 點閱:17下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在進行策略規劃時,最常用之方法為SWOT分析。然而,此種作法先天上將多元策略因子搭配之可能性捨棄,限制了創造力,恐造成決策的偏狹。
    因此,以資訊檢索為基礎,綜合網路分群等數學方法發展新的策略群組規劃方法與SWOT分析比較。並運用在現有之相互作用矩陣上實際演示新方法與SWOT分析不同之處。
    成功運用資訊檢索技術發展出策略因子關係指數矩陣,加入時間因素之考量,讓策略因子關係之判斷能夠更為全面,順利運用於網路分群法中。群組結果相較於SWOT分析具備多元策略因子搭配之可能性,因而能有效擴展決策視野;利用文件資料庫作為補助工具,能夠超越SWOT分析加諸於個人主觀之認知,因此增進了創造力;並在分群結果中發掘出新的策略組合。


    When conducting strategy planning, the most popular way is SWOT analysis. However, SWOT method abandons the possibility of grouping multiple strategy factors in advance, limits creativity of strategy forming, and narrows the vision of decision.
    Hence, based on many mathematical methods, i.e. information retrieval tech-nologies and network clustering methods, new grouping methods of strategy factors are going to be developed and be compared to SWOT analysis on performance by using the existing interacting matrices for demonstration.
    The strategy factor index matrix has been successfully built. Time is taken as an element into account, makes the evaluation of relationship of strategy factors more comprehensively, and is applied to network clustering methods smoothly. The results of strategy factors grouping have a potential of multi-factor assembling compared to SWOT analysis and a capability that can help expanding vision of decision. The utilizing of document database as assistance of forming the matrix makes the clustering methods transcend SWOT analysis on the classification of strategy factors relied on personal cognition. Therefore, it enhances the creativity. And, it is found that in the strategy factor groups, there are some new combinations when using those new methods.

    中文摘要 I ABSTRACT II 致謝辭 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景與動機 1 1.2 研究目的 1 1.3 研究流程 1 1.4 研究架構 2 1.5 研究範圍 3 第二章 文獻探討 4 2.1 策略分析、規劃、執行與評核系統架構 4 2.2 策略分析階段 5 2.2.1 資料蒐集 5 2.2.2 議題設定 5 2.2.3 要素分類 5 2.2.4 關鍵要素之擷取 6 2.2.5 願景與宗旨之產出 6 2.3 策略規劃階段 6 2.3.1 資源基礎論 7 2.3.2 資源評價模型 7 2.3.3 相互作用矩陣 11 2.3.4 利弊得失與優勝劣敗矩陣之配適策略 11 2.4 資訊檢索技術 14 2.4.1 資訊檢索塑模 14 2.4.2 文件及查詢表示式 15 2.4.3 詞項-文件矩陣 16 2.4.4 詞頻-逆向文件頻率 16 2.4.5 詞項-詞項相關矩陣 20 2.5 GIRVAN-NEWMAN網路分群法 21 2.5.1 二元圖及加權圖 21 2.5.2 多重圖 22 2.5.3介度 23 2.5.4 改良版之最短距離介度計算 25 2.5.5 最短路徑分群法與其他網路分群法之比較 27 2.5.6 模組性—定義 28 2.5.7 改良之模組性 30 2.5.8 Girvan-Newman最短路徑網路分群法演算流程說明 31 2.6 LU-WEN-CAO網路分群法 31 2.6.1 初步措施 31 2.6.2 傳導性—定義 32 2.6.3 Lu-Wen-Cao網路分群法演算流程說明 33 2.6.4 群內向心性 33 2.6.5 群間向心性 34 2.7 網路分群品質度量 34 2.7.1 正規化分割 34 2.7.2 傳導性—品質度量上之運用 36 2.7.3 Kernighan-Lin目標值 37 2.7.4 模組性—品質度量上之運用 38 2.7.5 集聚係數 38 2.7.6 k-叢 38 2.7.7 k-宗派 39 2.7.8 k-連通元件 39 第三章 方法論探討 41 3.1 策略因子之詞項合取單元 41 3.2 詞項-策略因子矩陣 42 3.3 策略因子關係指數 43 3.4 策略因子逆向文件頻率 45 3.4.1 策略因子文件頻率 45 3.4.2 策略因子逆向文件頻率之兩種形式 45 3.4.3 綜合分群品質度量 51 第四章 方法論運用演示 55 4.1 SWOT分析個案與相關資料之延伸 55 4.2 網路分群資料之產出 61 4.2.1 SWOT分析之分群結果及評價數據 64 4.2.2 Girvan-Newman網路分群法之分群結果及評價數據 65 4.2.3 Lu-Wen-Cao網路分群法之分群結果及評價數據 67 4.2.4 評價結果比較與討論 70 第五章 結論與建議 73 5.1 研究貢獻 73 5.2 研究限制暨未來研究方向 74 參考文獻 77

    英文部分

    Aggarwal, C. C. (2011). An introduction to social network data analytics (pp. 1-15). Springer US.
    Baeza-Yates, R., & Ribeiro-Neto, B. (2011). Modern information retrieval (Vol. 735). New York: ACM press.
    Barney, J. (1991). Firm resources and sustained competitive advantage. Journal of management, 17(1), 99-120.
    Bavelas, A. (1948). A mathematical model for group structures. Human organization, 7(3), 16-30.
    Boehmer, E., Masumeci, J., & Poulsen, A. B. (1991). Event-study methodology under conditions of event-induced variance. Journal of financial economics, 30(2), 253-272.
    Bohner, S. A. (1996). Software change impact analysis.
    Bollobás, B. (2004). Extremal graph theory. Courier Dover publications.
    Chakrabarti, D., & Faloutsos, C. (2006). Graph mining: Laws, generators, and algo-rithms. ACM computing surveys (CSUR), 38(1), 2.
    Clauset, A., Newman, M. E., & Moore, C. (2004). Finding community structure in very large networks. Physical review E, 70(6), 066111.
    Dhillon, I. S., Guan, Y., & Kulis, B. (2007). Weighted graph cuts without eigenvectors a multilevel approach. IEEE Pattern analysis and machine intelligence, 29(11), 1944-1957.
    Diestel, R. (2005). Graph theory (3rd ed'n).
    Freeman, L. C. (1977). A set of measures of centrality based on betweenness. So-ciometry, 35-41.
    Golub, G. H., & Reinsch, C. (1970). Singular value decomposition and least squares solutions. Numerische mathematik, 14(5), 403-420.
    Hill, T., & Westbrook, R. (1997). SWOT analysis: it's time for a product recall. Long range planning, 30(1), 46-52
    Hoory, S., Linial, N., & Wigderson, A. (2006). Expander graphs and their applications. Bulletin of the American mathematical society, 43(4), 439-561.
    Jones, K. S. (1972). A statistical interpretation of term specificity and its application in retrieval. Journal of documentation, 28(1), 11-21.
    Kannan, R., Vempala, S., & Vetta, A. (2004). On clusterings: good, bad and spectral. Journal of the ACM (JACM), 51(3), 497-515.
    Keen, P. G. (1981). Value analysis: justifying decision support systems. MIS quarterly, 5(1).
    Kernighan, B. W., & Lin, S. (1970). An efficient heuristic procedure for partitioning graphs. Bell system technical journal, 49(2), 291-307.
    Leskovec, J., Lang, K. J., & Mahoney, M. (2010, April). Empirical comparison of al-gorithms for network community detection. In proceedings of the 19th inter-national conference on world wide web (pp. 631-640). ACM.
    Lu, Z., Wen, Y., & Cao, G. (2013, March). Community detection in weighted networks: Algorithms and applications. In pervasive computing and communications (PerCom), 2013 IEEE international conference on (pp. 179-184). IEEE.
    Luhn, H. P. (1957). A statistical approach to mechanized encoding and searching of literary information. IBM journal of research and development, 1(4), 309-317.
    Mintzberg, H., Ahlstrand, B., & Lampel, J. (2005). Strategy safari: a guided tour through the wilds of strategic management. Simon and schuster.
    Multigraph. (2010). In Wikipedia, the free encyclopedia. Retrieved june 12, 2014, from http://commons.wikimedia.org/wiki/File:Multi-pseudograph.svg
    Newman, M. E. (2003). Mixing patterns in networks. Physical review E, 67(2), 026126.
    Newman, M. E. (2004a). Analysis of weighted networks. Physical review E, 70(5), 056131.
    Newman, M. E., & Girvan, M. (2004b). Finding and evaluating community structure in networks. Physical review E, 69(2), 026113.
    Newman, M. (2010). Networks: an introduction. Oxford university press.
    Onnela, J. P., Saramäki, J., Hyvönen, J., Szabó, G., De Menezes, M. A., Kaski, K., ... & Kertész, J. (2007). Analysis of a large-scale weighted network of one-to-one human communication. New journal of physics, 9(6), 179.
    Saaty, T. L. (1988). What is the analytic hierarchy process? (pp. 109-121). Springer Berlin Heidelberg.
    Salton, G., & Yang, C. S. (1973). On the specification of term values in automatic indexing. Journal of documentation, 29(4), 351-372.
    Sherlock, R. A. (1979). Analysis of the behaviour of Kauffman binary networks—I. State space description and the distribution of limit cycle lengths. Bulletin of mathematical biology, 41(5), 687-705.
    Sun, Y., Danila, B., Josic, K., & Bassler, K. E. (2009). Improved community structure detection using a modified fine-tuning strategy. EPL (europhysics letters), 86(2), 28004.
    Wakita, K., & Tsurumi, T. (2007, May). Finding community structure in mega-scale social networks. In proceedings of the 16th international conference on world wide web (pp. 1275-1276). ACM.
    Weihrich, H. (1982). The TOWS matrix—A tool for situational analysis. Long range planning, 15(2), 54-66.
    Weihrich, H. (1993). Daimler-Benz's move towards the next century with the TOWS Matrix. European business review, 93(1).
    Wu, Z., & Leahy, R. (1993). An optimal graph theoretic approach to data clustering: Theory and its application to image segmentation. IEEE Pattern analysis and machine intelligence, IEEE transactions on, 15(11), 1101-1113.
    Zipf, G. K. (1932). Selected studies of the principle of relative frequency in language.

    中文部分

    薛義誠. (2008). 策略規劃與管理. 雙葉書廊.
    陳宏麟. (1998). 有限圖的直徑問題. 中央大學數學研究所碩士班學位論文, 1-26.

    QR CODE
    :::