跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林彥廷
Yan-Ting Lin
論文名稱: Blatz-Ko材料圓孔動態問題分析
指導教授: 李顯智
Xian-Zhi Li
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
畢業學年度: 94
語文別: 中文
論文頁數: 218
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    本文探討Blatz-Ko 圓柱運動方程所得到的不變解,並且將非線性偏微分方程轉換至非線性常微分方程,使得求解過程得以簡化。本論文專注於兩個特別的案例作討論,並透過其常微分方程的相位平面分析兩個特別的案例的解之宏觀行為和奇異性和對稱性。且對那些可能碰到奇異解的區域,來對Blatz-Ko圓柱體的應變和應力做數值分析,了解材料可能的變化情況,並針對這些變化情況所代表的物理意義來做個解釋和說明,可以去更深入的了解Blatz-Ko 圓柱體的性質。


    Abstract
    This thesis studies two solutions of the equation of motion for Blatz-Ko cylinders. The nonlinear partial differential equation governing the cylinders is transformed into nonlinear ordinary differential equations and thus the whole solving process is simplified.
    The two solutions studied through analyzes of their phase plane of ordinary equations. We analyze the stresses and strains of Blatz-Ko cylinders for the cases where the solutions are singular.

    目錄 頁次 摘要.....................................................II 英文摘要................................................III 致謝.....................................................IV 目錄......................................................V 圖目錄.................................................VIII 表目錄...................................................XX 符號表.................................................XXII 第一章 緒論...............................................1 第二章 基礎理論...........................................4 2.1 推導Blatz-Ko 運動方程式...............................4 2.2 多參數子群的不變解....................................5 2.2.1 case(a).............................................6 2.2.2 case(b).............................................6 第三章 分析相位平面.......................................8 3.1 分析case(a)的相位平面.................................8 3.1.1 case(1) A 1 = - 1 , A 2 = -1.............................................9 3.1.2 case(2) A 1 = - 1 , A 2 = -4............................................11 3.1.3 case(3) A 1 = - 4 , A 2 = -4............................................13 3.1.4 case (4) A 1 = - 4 , A 2 = -1............................................16 3.1.5 對於case(a)的結論..................................19 3.2 分析case(b)的相位平面................................35 3.2.1 case(1) A 1 = - 0. 1...........................................37 3.2.2 case(2) A 1 = - 1...........................................39 3.2.3 case(3) A 1 = - 5...........................................42 3.2.4 case(4) A 1 = - 10..........................................44 3.2.5 對於case(b)的結論..................................47 第四章 分析兩種差分法的差異性............................66 4.1 傳統的數值差分法.....................................66 4.2 利用參數的數值差分法.................................67 4.3 比較兩者的優缺點.....................................68 第五章 對Blatz-Ko 材料做數值分析.........................81 5.1 分析case(a)的相關物理特性............................82 5.1.1 case(1) A 1 = - 1 , A 2 = - 1............................................82 5.1.2 case(2) A 1 = - 1 , A 2 = - 4............................................86 5.1.3 case(3) A 1 = - 4 , A 2 = - 4............................................90 5.1.4 case(4) A 1 = - 4 , A 2 = - 1............................................94 5.2 分析case(b)的相關物理特性............................95 5.2.1 case(1) A 1 = - 1............................................95 5.2.2 case(2) A 1 = - 5............................................99 第六章 結論與建議...................................... 187 6.1 結論................................................187 6.2 建議................................................188 參考文獻................................................189

    參考文獻
    1. 【F.A. McClintock, A criterion for ductile fracture by the growth of holes. J. Appl. Mech., 35 (1968) 363-371.】
    2. 【A. Needleman, Void growth in an elastic-plastic medium. J. Appl. Mech., 39 (1972) 964-970.】
    3. 【A.L.Gurson, Continuum theory of ductile rupture by void nucleation and growth : Part 1- yield criteria and flow rules for porous ductile media. J. Energ. Matl. Tech.,Trans.ASME, (1977) 2-15.】
    4. 【U.Stigh, Effects of interacting cavities on damage parameter. J. Appl. Mech, 53 (1986) 485-490.】
    5. 【H.S. Hou and R. Abeyarante, Cavitation in elastic and elastic-plastic solids, J. Mech. Phys. Solids, 40 (1992) 571-592.】
    6. 【A.N. Gent, Cavitation in rubber: a cautionary tale. Rubber Chem. Tech., 63 (1990) G49-G53.】
    7. 【C.O. Horgan and D.A. Polignone, Cavitation in nonlinearly elastic solids: a review. Appl.Mech.Rev., 48 (1995) 471-485.】
    8. 【J.M. Ball, Discontinous equilibrium solutions and cavitation in nonlinear elasticity. Phil. Trans. R. Soc. Lond, A306 (1982) 557-610.】
    9. 【C.A. Stuart, Radially symmetric cavitation for hyperelastic materials, Ann. Inst. Henri Poincare-Analyse non linear, 2 (1985) 33-66.】
    10. 【C.A. Stuart, Estimating the critical radius for radially symmetric cavitation, Quart. Appl. Math., 51 (1993) 251-263.】
    11. 【C.O.Horgan and R.Abeyaratne, A bifurcation problem for a compressible nonlinearly elastic medium: growth of a micro-void. J.Elasticity,16 (1986) 189-200.】
    12. 【S.Biwa, Critical stretch for formation of a cylindrical void in a compressible hyperelastic material. Int. J. Non-Linear Mech., 30 (1995) 899-914】
    13. 【S.Biwa, E.Matsumoto and T.Shibata, Effect of constitutive parameters on formation of a spherical void in a compressible non-linear elastic material. J.Appl.Mech. 61 (1994) 395-401.】
    14. 【H.C. Lei (李顯智) and H.W. Chang, Void formation and growth in a class of compressible solids. J. Engrg. Math., 30 (1996) 693-706.】
    15. 【李顯智,唐又新,孔洞承受的極限壓力,中華民國力學學會期刊,33(1997)205-212】
    16. 【M.S. Chou-Wang and C.O. Horgan, Cavitation in nonlinear elastodynamics for neo-HooKean materials. Int.J.Engrg.Sci., 27 (1989) 967-973.】
    17. 【P.J. Blatz and W.L. Ko, Application of finite elastic theory to the deformation of rubbery materials . Trans.Soc. Rheol. , 6 (1962) 223-251】
    18. 【R. Abeyaratne and C.O. Horgan, Initiation of localized plane deformations at a circular cavity in an infinite compressible nonlinear elastic medium. J. Elasticity, 15 (1985) 243-256.】
    19. 【J.K. Knowles and E. Sternberg, On the ellipticity of non-linear elastostatics for a special material. J. Elasticity, 5 (1975) 341-361.】
    20. 【C.O. Horgan, Remarks on ellipticity for the generalized Blatz-Ko constitutive model for compressible nonlinearly elastic solid. J. Elasticity, 42 (1996) 165-176.】
    21. 【A. Mioduchowski and J.B. Haddow, Combined torsional and telescopic shear of a compressible hyperelastic tube. J. Appl. Mech., 46 (1979) 223-226.】
    22. 【M. Zidi, Circular shearing and torsion of a compressible hyperelastic and prestressed tube. Int. J. Non-Linear Mech., 35 (2000) 201-209.】
    23. 【M. Zidi, Torsion and axial shearing of a compressible hyperelastic tube. Mech. Res. Comm., 26 (1999) 245-252.】
    24. 【M. Cheref, M. Zidi and C. Oddou, Analytical modelling of vascular prostheses mechanics. Intra and extracorporeal cardiovascular fluid dynamics. Comput. Mech. Pub., 1 (1998) 191-202.】
    25. 【M. Zidi, Finite torsional and anti-plane shear of a compressible hyperelastic and transversely isotropic tube. Int. J. Engrg. Sci., 38 (2000) 1481-1496.】
    26. 【G.B. Whitham, Linear and Nonlinear Waves. Weily, New York (1974).】
    27. 【H.C. Lei (李顯智), Linearity of the steady state of a nonlinear anisotropic diffusion process. J. Chinese Inst. Engineers, 18 (1995) 461-470.】
    28. 【H.C. Lei (李顯智) and H.W. Chang, A list of hodograph transformations and exactly linearizable systems . Int. J. Non-Linear Mech. , 31 (1996) 117-127 .】
    29. 【洪明瑞,李顯智,張惠文,Gibson壓密理論的線性特質,中華民國力學學會期刊,12(1996)307-317.】
    30. 【H.C. Lei (李顯智) , Study of a hodograph transformation and its applications . J. Inst. Chinese Engineers (2002). (707-714).】
    31. 【G.W. Bluman and S. Kumei , Symmetries and Differential Equations . Springer-Verlag , New York (1989).】
    32. 【H.C. Lei (李顯智) and M.J. Hung , Linearity of waves in some systems of non-linear elastodynamics . Int.J. Non-Linear Mech. ,32 (1997) 353-360】.
    33. 【J. Weeiss, M. Tabor and G. Carnevale, The Painleve ptoperty for partial differential equations. J. Math. Phys., 24 (1983) 522-526.】
    34. 【A.A. Alexeyev, Some notes on singular manifold method-- Several manifolds and constraints. J. Phys. A-math. Gen., 33 (2000) 1873-1894.】
    35. 【L.V. Ovsiannikov, Group Analysis of Differential Equations (W. F. Ames, trans.). Academic Press, New York (1982).】
    36. 【P.J. Olver, Application of Lie Groups to Differential Equations. Springer-Verlag, New York (1986).】
    37. 【H.C. Lei (李顯智) and J.A. Blume , Lie group and invariant solution of the plane-strain equation of motion of a neo-Hookean solid . Int. J. Non-linear Mech. , 31 (1996) 465-482 .】
    38. 【H.C. Lei (李顯智), Group splitting and linearization mapping of a solvable nonlinear wave equation . Int. J. Non-Linear Mech. , 33 (1998) 461-471】
    39. 【李顯智, Blatz-Ko材料中微小孔洞生成動態分析。國科會計劃,NSC91-2211-E008-034, 2002/8~2003/7.】
    40. 【李顯智, Blatz-Ko圓球徑向運動方程的李群與解析解。國科會計劃,NSC92-2211-E008-038, 2003/8~2004/7.】
    41. 【李顯智, Blatz-Ko材料圓孔動態破壞分析。國科會計劃,NSC93-2211-E008-018, 2004/8~2005/7.】
    42. 【Ince, E. L., Ordinary Differential Equations, Dover, N.Y., 1956.】

    QR CODE
    :::