| 研究生: |
余長霖 Chang-Lin Yu |
|---|---|
| 論文名稱: |
結合經驗模態分解與多尺度熵分析之階次追蹤技術於非固定轉速之軸承故障診斷 Application of Empirical Mode Decomposition and Multi-scale Entropy Analysis to the Roller Bearing Fault Diagnosis under Variable Rotation Speed via Order Tracking Technology |
| 指導教授: |
吳天堯
Tian-Yao Wu 黃衍任 Yean-ren Hwang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系在職專班 Executive Master of Mechanical Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 102 |
| 中文關鍵詞: | 軸承故障診斷 、階次追蹤 、多尺度熵 、決策樹 、變轉速 、經驗模態分解法 |
| 外文關鍵詞: | Multi-scale entropy, variable rotation speeds, Empirical Mode Decomposition, decision tree, bearing fault diagnosis, order tracking |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文結合了希爾伯特-黃轉換與多尺度熵的分析方法,在變轉速情況下,對旋轉機械軸承系統發生內圈損壞、外圈損壞、滾柱損壞等情況進行故障診斷。首先,利用階次追蹤方法將非穩態非線性的訊號轉換成穩態的角度域訊號,再藉由希爾伯特-黃轉換的經驗模態分解法拆解,將複雜訊號分解成若干個固有模態函數,對發生振幅調制現象的固有模態函數進行包絡,利用粗粒化的過程,將訊號轉換成新的尺度序列,對各尺度序列進行取樣熵的計算,從各尺度的取樣熵值提取故障特徵,最後利用決策樹辨別出各種故障類型,並建立其樹狀辨識模型。
In this paper, the novel approach combining Hilbert-Huang Transform (HHT) and the multi-scale entropy (MSE) analysis is utilized for diagnosing the roller bearing faults, such as inner race defect, outer race defect and roller defect, under the operating conditions of variable rotation speeds. The vibration signals are first measured through the order tracking technique, so that the signals are sampled with identical angle increment and thus the vibration signals are stationary without the factor of shaft rotation speed. The vibration signals are then decomposed into a number of Intrinsic Mode Functions (IMFs) by using the Empirical Mode Decomposition (EMD) method. The envelope analysis is employed to the IMFs that have amplitude modulation phenomenon. The envelope signals are transformed to the series of different scales by course-grained process and MSE of the series can be calculated. With the extracted features of the MSEs, the decision tree algorithm is utilized to classify the different faulted bearing types and faulted levels.
參考文獻
[1] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of Royal Society London. A, No. 454, pp. 903-995, 1998.
[2] Huang, N. E. and Wu, Z., “A study of the characteristics of white noise using the empirical mode decomposition method,” Proceedings of Royal Society London. A, No. 460, pp. 1597-1611, 2004.
[3] Yu, D., Yang, Y. and Cheng, J., “The application of energy operator demodulation approach based on EMD in machinery fault diagnosis,” Mechanical Systems and Signal Processing, Vol.21, pp.668-677, 2007.
[4] Yu, D., Yang, Y. and Cheng, J., “The application of energy operator demodulation approach based on EMD in machinery fault diagnosis,” Mechanical Systems and Signal Processing, Vol.21, pp.668-677, 2007.
[5] Yu, D., Yang, Y. and Cheng, J., “A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM,” Measurement, Vol.40, pp.943–950, 2007.
[6] Sun. W., Chen, J. and Li, J., “Decision tree and PCA-based fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, Vol.21, pp.1300-1317, 2007.
[7] 朱效賢,“包絡譜分析於軸承故障診斷之探討暨工程應用,”中央大學機械工程學系碩士論文,2005。
[8] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am J Physiol Heart Circ Physiol, 278, pp. H2039-H2049, 2000.
[9] M. Costa, A. L. Goldberger and C. K. Peng, “Multi-scale Entropy Analysis of Complex Physiologic Time Series,” Physical Review Letters, Vol. 89, No.6, pp. 068102-1 - 068102-4, 2002
[10] M. Costa, A. L. Goldberger and C. K. Peng, “Multi-scale Entropy Analysis of Biological Signals,” Physical Review E, Vol.71, pp. 021906-1 - 021906-18, 2005.
[11] 王俊傑,吳求文,吳順德,李易宗,吳豐泰,”多尺度熵在軸承異常監控與診斷之應用,”中國機械工程學會第二十八屆全國學術研討會論文集,2011。
[12] 吳求文,王俊傑,吳順德,” 基於多尺度熵、區別指標與支持向量機之旋轉機械錯誤診斷系統,” 中國機械工程學會第二十八屆全國學術研討會論文集,2011。
[13] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, pp. 81–106, 1986.
[14] J. R. Quinlan, “C4.5 Programs for Machine Learning,” Morgan Kaufmann, San Mateo, CA, 1993.
[15] Li, H., Zheng, H. and Tang, L., “Gear fault diagnosis based on order tracking and Hilbert-Huang transform,” IEEE Sixth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 468-472, 2009.
[16] Shannon, C. E. and Weaver, W., “The Mathematical Theory of Communication,” 1949.