跳到主要內容

簡易檢索 / 詳目顯示

研究生: 余長霖
Chang-Lin Yu
論文名稱: 結合經驗模態分解與多尺度熵分析之階次追蹤技術於非固定轉速之軸承故障診斷
Application of Empirical Mode Decomposition and Multi-scale Entropy Analysis to the Roller Bearing Fault Diagnosis under Variable Rotation Speed via Order Tracking Technology
指導教授: 吳天堯
Tian-Yao Wu
黃衍任
Yean-ren Hwang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系在職專班
Executive Master of Mechanical Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 102
中文關鍵詞: 軸承故障診斷階次追蹤多尺度熵決策樹變轉速經驗模態分解法
外文關鍵詞: Multi-scale entropy, variable rotation speeds, Empirical Mode Decomposition, decision tree, bearing fault diagnosis, order tracking
相關次數: 點閱:14下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文結合了希爾伯特-黃轉換與多尺度熵的分析方法,在變轉速情況下,對旋轉機械軸承系統發生內圈損壞、外圈損壞、滾柱損壞等情況進行故障診斷。首先,利用階次追蹤方法將非穩態非線性的訊號轉換成穩態的角度域訊號,再藉由希爾伯特-黃轉換的經驗模態分解法拆解,將複雜訊號分解成若干個固有模態函數,對發生振幅調制現象的固有模態函數進行包絡,利用粗粒化的過程,將訊號轉換成新的尺度序列,對各尺度序列進行取樣熵的計算,從各尺度的取樣熵值提取故障特徵,最後利用決策樹辨別出各種故障類型,並建立其樹狀辨識模型。


    In this paper, the novel approach combining Hilbert-Huang Transform (HHT) and the multi-scale entropy (MSE) analysis is utilized for diagnosing the roller bearing faults, such as inner race defect, outer race defect and roller defect, under the operating conditions of variable rotation speeds. The vibration signals are first measured through the order tracking technique, so that the signals are sampled with identical angle increment and thus the vibration signals are stationary without the factor of shaft rotation speed. The vibration signals are then decomposed into a number of Intrinsic Mode Functions (IMFs) by using the Empirical Mode Decomposition (EMD) method. The envelope analysis is employed to the IMFs that have amplitude modulation phenomenon. The envelope signals are transformed to the series of different scales by course-grained process and MSE of the series can be calculated. With the extracted features of the MSEs, the decision tree algorithm is utilized to classify the different faulted bearing types and faulted levels.

    目錄 摘要 i Abstract ii 誌謝 iii 目錄 iv 圖目錄 vii 表目錄 xi 第一章 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 1-3 文獻回顧 4 1-4 本文大綱 7 第二章 理論 8 2-1 希爾伯特-黃轉換(Hilbert-Huang Transform, HHT) 8 2-1-1經驗模態分解法(Empirical Mode Decomposition, EMD) 9 2-1-2固有模態函數(Intrinsic Mode Function, IMF) 10 2-1-3包絡線分析(Envelope Analysis) 10 2-2多尺度熵 (Multi-scale Entropy) 11 2-2-1熵(Entropy) 11 2-2-2取樣熵(Sample entropy) 12 2-2-3多尺度熵(Multi-scale Entropy) 15 2-3 決策樹 17 2-3-1決策樹C4.5原理及步驟 19 2-3-2 C4.5處理連續數值的方式 21 第三章 實驗架構及實驗方法 22 3-1軸承故障類型 22 3-1-1正常 22 3-1-2內圈損壞 23 3-1-3外圈損壞 24 3-1-4滾柱損壞 25 3-1-5軸承故障特徵頻率 26 3-2.階次追蹤(Order Tracking) 29 3-3實驗架構 30 3-3-1實驗平台 31 3-4實驗設備與規格 32 3-5 實驗方法與流程 41 3-5-1 訊號擷取流程 41 3-5-2多尺度熵分析實驗設置 42 3-5-3 決策樹分類特徵擷取方法 43 第四章 轉速設定與多尺度熵分析結果 44 4-1轉速設定 44 4-2多尺度熵分析結果 46 4-2-1實驗(Ⅰ)-原始振動訊號之MSE分析 46 4-2-2實驗(Ⅱ)- 故障特徵頻率範圍內之IMF多尺度熵分析 56 4-2-3實驗(Ⅲ)-原始訊號之包絡線MSE分析 60 4-2-4實驗(Ⅳ)-原始訊號之IMF的包絡線MSE分析 63 4-3結論 67 第五章 決策樹分類結果 68 5-1特徵擷取 68 5-2分類結果 70 第六章 結論及未來展望 84 6-1 結論 84 6-2 未來展望 85 參考文獻 86

    參考文獻
    [1] Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N. C., Tung, C. C. and Liu, H. H., “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proceedings of Royal Society London. A, No. 454, pp. 903-995, 1998.
    [2] Huang, N. E. and Wu, Z., “A study of the characteristics of white noise using the empirical mode decomposition method,” Proceedings of Royal Society London. A, No. 460, pp. 1597-1611, 2004.
    [3] Yu, D., Yang, Y. and Cheng, J., “The application of energy operator demodulation approach based on EMD in machinery fault diagnosis,” Mechanical Systems and Signal Processing, Vol.21, pp.668-677, 2007.
    [4] Yu, D., Yang, Y. and Cheng, J., “The application of energy operator demodulation approach based on EMD in machinery fault diagnosis,” Mechanical Systems and Signal Processing, Vol.21, pp.668-677, 2007.
    [5] Yu, D., Yang, Y. and Cheng, J., “A fault diagnosis approach for roller bearing based on IMF envelope spectrum and SVM,” Measurement, Vol.40, pp.943–950, 2007.
    [6] Sun. W., Chen, J. and Li, J., “Decision tree and PCA-based fault diagnosis of rotating machinery,” Mechanical Systems and Signal Processing, Vol.21, pp.1300-1317, 2007.
    [7] 朱效賢,“包絡譜分析於軸承故障診斷之探討暨工程應用,”中央大學機械工程學系碩士論文,2005。
    [8] J. S. Richman and J. R. Moorman, “Physiological time-series analysis using approximate entropy and sample entropy,” Am J Physiol Heart Circ Physiol, 278, pp. H2039-H2049, 2000.
    [9] M. Costa, A. L. Goldberger and C. K. Peng, “Multi-scale Entropy Analysis of Complex Physiologic Time Series,” Physical Review Letters, Vol. 89, No.6, pp. 068102-1 - 068102-4, 2002
    [10] M. Costa, A. L. Goldberger and C. K. Peng, “Multi-scale Entropy Analysis of Biological Signals,” Physical Review E, Vol.71, pp. 021906-1 - 021906-18, 2005.
    [11] 王俊傑,吳求文,吳順德,李易宗,吳豐泰,”多尺度熵在軸承異常監控與診斷之應用,”中國機械工程學會第二十八屆全國學術研討會論文集,2011。
    [12] 吳求文,王俊傑,吳順德,” 基於多尺度熵、區別指標與支持向量機之旋轉機械錯誤診斷系統,” 中國機械工程學會第二十八屆全國學術研討會論文集,2011。
    [13] J. R. Quinlan, “Induction of decision trees,” Machine learning, vol. 1, pp. 81–106, 1986.
    [14] J. R. Quinlan, “C4.5 Programs for Machine Learning,” Morgan Kaufmann, San Mateo, CA, 1993.
    [15] Li, H., Zheng, H. and Tang, L., “Gear fault diagnosis based on order tracking and Hilbert-Huang transform,” IEEE Sixth International Conference on Fuzzy Systems and Knowledge Discovery, pp. 468-472, 2009.
    [16] Shannon, C. E. and Weaver, W., “The Mathematical Theory of Communication,” 1949.

    QR CODE
    :::