| 研究生: |
呂柏璋 Po- Chang Lu |
|---|---|
| 論文名稱: |
溫拌瀝青混凝土應用於台灣地區可行性研究 A study of warm mix asphalt to be used in Taiwan |
| 指導教授: |
林志棟
Jyh-Dong Lin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 畢業學年度: | 100 |
| 語文別: | 中文 |
| 論文頁數: | 130 |
| 中文關鍵詞: | 刨除料 、溫拌添加劑 、節能減碳 、溫拌瀝青混凝土 、熱拌瀝青混凝土 |
| 外文關鍵詞: | Carbon reduction, Hot mix asphalt, RAP, Warm mix additive, Warm mix asphalt |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
自工業革命以來全球化石燃料的使用不斷增加,成為主要能源的供應方式,導致溫室氣體不斷的排放造成地球暖化,因此節能減碳、永續經營及綠能發展概念成為現今主要議題,以熱拌及溫拌瀝青混凝土施工溫度、生產過程碳排放量及成效試驗三個構面進行研究與評估。
熱拌瀝青混凝土生產過程產生大量的煙霧及溫室氣體,對施工人員及氣候暖化造成嚴重的影響,若降低拌合溫度可有效改善相關問題,但須評估降低生產溫度是否對瀝青混凝土成效產生不良影響,本研究以添加劑方式調製溫拌瀝青膠泥藉此降低拌合溫度,針對溫拌瀝青膠泥性質進行相關性試驗,評估添加劑改變原始瀝青膠泥特性,探討溫拌瀝青混凝土配合設計方式;將以刨除料摻配量0%、20%、40%及60%配比設計,比較熱拌與溫拌瀝青拌合後之成效性質、材料及拌合過程中所產生碳排放量試算,並探討兩種瀝青混凝土成本差異。
藉由降低拌合溫度所生產之溫拌瀝青混凝土有較低的碳排放量,但須做更多的評估及規範的制定才能應用於台灣地區鋪面,並且溫拌拌合技術種類繁多,須有效掌控各種拌合特性,才可確保施工品質。
The usage of fossil fuel increasing from Industrial revolution and it becomes the main energy resource, but on the hand, fossil fuel results in global warming as well. Therefore, energy saving and carbon reduction, sustainable use, and environmental consciousness becomes the main theme for discussion. The present study investigates on three aspects. First, estimate the degree of warm mix asphalt and hot mix asphalt during the procedure. Second, estimate at carbon reduce emissions while processing asphalt pavement. Finally,the asphalt concrete effectiveness of the test.
The processing of hot mix asphalt usually hazy with smoke and result in greenhouse effect, moreover, it will influence the health of worker as well as climate serious negative effect. Hence, this research assumes that decreasing the temperature of during operation can avoid negative effects. The present study use an additive to manufacture the warm mix asphalt in order to decrease the temperature, moreover, this research aim at the additive character of warm mix asphalt . This study with the mix design practices, this is, 0%, 20%, 40 and 60 % RAP to compare the HMA and WMA carbon emissions, cost differences and effectiveness of the test results.
The result of this experiment confirms that decreasing asphalt mix temperature can reduce carbon emission. Nevertheless, knowing well characteristics of blending and evaluating condition risk before application are the most important aspec.
1. 林志棟, 「瀝青混凝土配合設計及其原理」, 公共工程品質管理系列1988, 台北.
2. 公共工程委員會, 施工綱要規範 02741章, 「瀝青混凝土之一般要求」.
3. Chowdhury, A. and J.W. Button, ”A review of warm mix asphalt”. Texas A&M University System, 2008.
4. Kristjansdottir, O., ”Warm Mix Asphalt for Cold Weather Paving”, 2006, University of Washington.
5. Prowell, B.D., G.C. Hurley, and B. Frank, ”Warm-mix asphalt: Best practices”2007: National Asphal Pavement Association.
6. 林志棟、陳順興, 「淺談溫拌式瀝青滋凝土應用之探討」, 技師月刊, 2006(42): p. 119-124.
7. Zhang, R.H., Y.K. Zou, and Y.M. Yin, Application of warm-mix modified asphalt mixture in highway maintenance project. International Journal of Pavement Research and Technology, 2009. 2(4).
8. Angelo, J., et al., ”Warm–Mix Asphalt: European Practice. Federal Highway Administration (FHWA) ”, 2008, Report No. FHWA–PL–08–007, February, 2008. Washington DC, USA.
9. Soenen, H., et al., Foamed Bitumen in Half-Warm Asphalt: A Laboratory Study. International Journal of Pavement Research and Technology, 2010. 3(4).
10. Mallick, R.B. and G. Hendrix, Use of foamed asphalt in recycling incinerator ash for construction of stabilized base course. Resources, conservation and recycling, 2004. 42(3): p. 239-248.
11. 林志棟, 「溫拌瀝青與泡沫瀝青混凝土應用於亞熱帶地區鋪面工程之可行性研究」, 2011, 國家科學委員會.
12. 邱垂德、黃明詠, 「泡沫瀝青冷拌再生混合料之性質研究」, 鋪面工程, 2002. 1(2): p. 1-17.
13. ”Laboratory-scale foamed bitumen plant WLB10S ”, Wirtgen, Editor: Germany.
14. ”For Asphalt Concrete and Other Hot-Mix Types”, in Asphalt Institute No.2 (MS-2), Sixth, Editor 1997.
15. Hurley, G.C. and B.D. Prowell, ”Evaluation of Sasobit for use in warm mix asphalt”. NCAT report, 2005. 5(06).
16. 吳武雄、陳裕新, 「半固態瀝青膠泥年度試驗特性」, 中華技術季刊, 2005. 財團法人中華顧問工程司(65).
17. 吳超凡, 「添加 Sasobit 溫拌瀝青混合料的拌和與壓實溫度確定」, 湖南大學學報: 自然科學版, 2010. 37(008): p. 1-5.
18. 余政儒, 「瀝青混凝土添加石灰耐久性之研究」, 國立中央大學, 碩士論文, 中壢. 1994.
19. 王睿懋, 「亞熱帶地區提昇再生瀝青混凝土耐久性之研究 」, 國立中央大學, 博士論文, 中壢, 2009.
20. 侯此威, 「溫拌再生瀝青混凝土水份侵害特性之研究」, 淡江大學, 碩士論文, 台北, 2011.
21. Kristjansdottir, O., et al., ”Assessing potential for warm-mix asphalt technology adoption”. Transportation Research Record: Journal of the Transportation Research Board, 2007. 2040(1): p. 91-99.
22. Ali, A.W., et al., Laboratory Evaluation of Foamed Warm Mix Asphalt. International Journal of Pavement Research and Technology, 2012. 5(2).
23. Zhao, S., et al. Laboratory Performance Evaluation of Warm Mix Asphalt Containing High Percentages of RAP. 2012.
24. Rubio, M.C., et al., ”Warm mix asphalt: an overview”. Journal of Cleaner Production, 2012. 24: p. 76-84.
25. Button, J.W., et al., ”A synthesis of warm mix asphalt”, 2007, Texas Transportation Institute, Texas A&M University System.
26. 葉斯文, 「溫拌瀝青混凝土之水份侵害特性研究」, 淡江大學, 碩士論文, 台北, 2008.
27. Hurley, G.C. and B.D. Prowell, Evaluation of Evotherm for use in warm mix asphalt. NCAT report, 2006. 6(02).
28. Brian D. Prowell, P.D., P.E., Warm Mix Asphalt: Best Practices, 2008, Asphalt User/Producer Association.
29. DTU, J.M.J., ”WARM MIX ASPHALT INVESTIGATION”, 2010, RIGA TECHNICAL UNIVERSITY.
30. Roberts, F.L., et al., Hot mix asphalt materials, mixture design and construction. 1996.
31. O’Sullivan, K., 100 Percent Recycling–Sustainability in Pavement Construction. IRF News, 2009.
32. Pratheepan, K., Use of reclaimed asphalt pavements (RAP) in airfield HMA pavements, 2009, University of Nevada, Reno.
33. Performance Evaluation of High RAP Surface Mixture Containing SasobitR, 2005, Advanced Asphalt Technologies.
34. 吳國洋, 「混凝土製品應用於土木工程之減碳效益評估 -以道路、建築工程為例」, 國立中央大學, 碩士論文, 中壢, 2011.
35. 環科工程股份有限公司, 「溫室氣體盤查實務」,2010.
36. Silva, H.M.R.D., et al., Assessment of the Performance of Warm Mix Asphalts in Road Pavements. International Journal of Pavement Research and Technology, 2010. 3(3).
37. 林志忠, 「公共工程使用再生材料落實節能減碳初步探討」,國立中央大學, 碩士論文, 中壢,2010
38. Hammond, G. and C.I. Jones, Embodied energy and carbon in construction materials. Proceedings of the ICE Energy, 2008. 161(2): p. 87-98.