跳到主要內容

簡易檢索 / 詳目顯示

研究生: 温明憲
Ming-Hsien Wen
論文名稱: 熱處理對鋁銅合金析出相演變及機械性質影響之研究
Precipitation Evolution and Mechanical Properties in an Al-Cu alloy as a Function of Environmental Temperatures
指導教授: 黃爾文
E-Wen Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 127
中文關鍵詞: 鋁銅合金同步輻射析出相演變小角度散射
外文關鍵詞: Al-Cu alloy, synchrotron, precipitation, phase transformation, small-angle scattering
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是結合同步X 光散射及小角度散射探討鋁銅合金的
    析出相轉變及微結構演化的過程,進一步描繪出隨著溫度增加的過程
    中,鋁銅合金析出相變化的細節,如:各析出相的成核或溶解的特徵
    等。小角度X 光散射可以解讀鋁銅合金整體隨著溫度及時間改變的
    過程中,析出相微結構變化的資訊,再藉由X 光散射圖譜記錄各析
    出相的相變化演化對應溫度變化的相關資訊,根據這兩個實驗方式,
    本論文觀察到鋁銅合金在因為提升溫度造成的析出相改變過程中,各
    種詳細的微結構改變趨勢並量化其分析結果,從X 光散射得知的晶
    格結構到小角度X 光散射解讀的奈米尺度下析出相形態學方面的演
    變等,最後從各種材料微結構改變的趨勢中,進一步去判斷主要造成
    鋁銅合金強化的原因。從本研究結果觀察到在使用熱處理增進鋁銅合
    金強度方法中,強度貢獻最多,也就是最重要的主導因素為析出相的
    相變化,而非析出相尺寸或是晶粒尺寸的改變。


    An experimental investigation, combining synchrotron X-ray
    diffraction and small-angle scattering to study the microstructure evolution and phase transformation of the precipitation in an Al-Cu superalloy. Upon increasing the temperatures during precipitation process, the dissolution and the nucleation of different phases are characterized.
    The small-angle X-ray scattering profiles demonstrate the temporal behavior of structural evolution of the precipitates. The X-ray diffraction patterns records the spatial relationship of various precipitates during the
    phase transformation and reflect the phase transformation of the precipitates during the heating. The present study provides the insight of the phase transformation structural characteristics in the Al-Cu system from the lattice structure to the nano-scale morphological geometry simultaneously. Finally, determine the main structure factor improve the strength of Al-Cu alloy from these microstructure evolution information with temperature. Observe from the results of this study, the main structure factor enhance the strength of Al-Cu alloy is precipitation phase transition.

    中文摘要 ............................................................................................... i 英文摘要 .............................................................................................. ii 致謝 ..................................................................................................... iii 目次 ....................................................................................................... v 圖次 ..................................................................................................... ix 表次 ................................................................................................... xiv CH 1 緒論 ............................................................................................ 1 1.1 簡介 ............................................................................................ 1 1.2 研究動機 .................................................................................... 3 1.3 鋁合金介紹 ................................................................................ 4 1.3.1 材料背景 ............................................................................. 4 1.3.2 種類代號 ............................................................................. 5 1.3.3 鋁之性質 ............................................................................. 7 CH 2 理論背景與文獻回顧 .............................................................. 11 2.1 析出硬化原理 .......................................................................... 11 2.2 鋁合金析出回顧 ...................................................................... 12 2.2.1 Al-Mg-Si 合金 ................................................................... 12 2.2.2 Al-Zn-Mg 合金 .................................................................. 16 2.2.3 Al-Cu 合金 ......................................................................... 18 CH 3 實驗及儀器原理 ...................................................................... 24 3.1 實驗流程 .................................................................................. 24 3.2 樣品處理 .................................................................................. 26 3.2.1 固溶處理 ........................................................................... 26 3.2.2 淬火處理 ........................................................................... 27 3.2.3 時效處理 ........................................................................... 29 3.2.4 樣品製備 ........................................................................... 30 3.3 儀器原理 .................................................................................. 32 3.3.1 廣角度X 光散射 .............................................................. 32 3.3.2 同步光源介紹 ................................................................... 33 3.3.3 小角度X 光散射 .............................................................. 35 3.3.4 硬度試驗 ........................................................................... 36 3.3 軟體簡介 .................................................................................. 39 3.3.1 Fit-2D ................................................................................. 39 3.3.2 PowderCell ......................................................................... 40 3.3.3 Polar ................................................................................... 40 CH 4 結果與討論 .............................................................................. 42 4.1 PowderCell 模擬 ....................................................................... 42 4.2 廣角度X 光散射實驗 ............................................................. 46 4.2.1 No aging (as-quench)條件 ................................................. 46 4.2.2 Aging 200℃-1hr (200℃-1hr)條件 .................................... 51 4.3 小角度X 光散射實驗 ............................................................. 56 4.3.1 No aging (as-quench)條件 ................................................. 56 4.3.2 Aging 200℃-1hr (200℃-1hr)條件 .................................... 58 4.4 硬度試驗 .................................................................................. 66 4.4.1 No aging (as-quench)條件 ................................................. 66 4.4.2 Aging 200℃-1hr (200℃-1hr)條件 .................................... 70 4.5 金相實驗 .................................................................................. 74 4.5.1 No aging (as-quench)條件 ................................................. 75 4.5.2 Aging 200℃-1hr (200℃-1hr)條件 .................................... 75 CH 5 結論 .......................................................................................... 82 參考文獻 ............................................................................................. 84 附錄 ..................................................................................................... 87

    1. Lu K, Lu L, Suresh S. Strengthening materials by engineering coherent
    internal boundaries at the nanoscale. Science 2009;324(5925):349-352.
    2. 呂璞石, 黃振賢. 金屬材料: 文京圖書公司印行; 1977.
    3. 金重勳, 材料科學. 機械材料: 復文; 2001.
    4. 謝奇峰. 汽車防撞桿用高強度鋁合金擠型材均質化處理與預熱溫度影
    響之研究. 2000.
    5. 日本輕金屬學會委員. 鋁合金之組織與性質: 日本輕金屬學會; 1991.
    6. Hälldahl L. Thermal analysis studies of the precipitation and dissolution
    processes of second phases in the Al-Si and Al-Si-Mg systems. Thermochimica acta
    1993;214(1):33-40.
    7. Ou B-L, Tsuzuki Y, Kishino K, Sasaki K. Age-Hardenability of a
    6000-Series (Al-Mg-Si) Alloy. Furukawa Review 1995;14:157-157.
    8. Kelly A. Precipitation hardening: Pergamon Press; 1963.
    9. Lorimer G, Nicholson R. Further results on the nucleation of precipitates in
    the Al-Zn-Mg system. Acta Met 1966;14(8):1009-1013.
    10. Ringer S, Sofyan B, Prasad K, Quan G. Precipitation reactions in Al–4.0
    Cu–0.3 Mg (wt.%) alloy. Acta Materialia 2008;56(9):2147-2160.
    11. Pötter D. Precipitation Hardening Behaviour of Al-2%Cu and Al-5.4%Cu
    Alloys. [Unpublished dissertation]: University of Paderborn; 2006.
    12. Starink M, Van Mourik P. Cooling and heating rate dependence of
    precipitation in an Al Cu alloy. Materials Science and Engineering: A
    1992;156(2):183-194.
    13. Takeda M, Maeda Y, Yoshida A, Endo T, Yabuta K, Konuma S.
    Discontinuity of GP (I) zone and {theta}{double_prime}-phase in an Al-Cu alloy.
    Scripta materialia 1999;41(6).
    14. Son S, Takeda M, Mitome M, Bando Y, Endo T. Precipitation behavior of an
    Al–Cu alloy during isothermal aging at low temperatures. Materials letters
    2005;59(6):629-632.
    15. Esmaeili S, Lloyd D, Poole W. A yield strength model for the Al-Mg-Si-Cu
    alloy AA6111. Acta Materialia 2003;51(8):2243-2257.
    16. Vaithyanathan V, Wolverton C, Chen L. Multiscale modeling of precipitate
    microstructure evolution. Physical review letters 2002;88(12):125503.
    17. Shanmugasundaram T, Heilmaier M, Murty B, Sarma VS. Microstructure
    and mechanical properties of nanostructured Al-4Cu alloy produced by mechanical
    alloying and vacuum hot pressing. Metallurgical and Materials Transactions A
    2009;40(12):2798-2801.
    18. 李正國, 李志偉, 林本源. 熱處理. 高立圖書, 民國 80 年 1996;8.
    19. 陳信龍, 鄭有舜. 小角度 X 光散射在高分子奈米結構解析之應用. 科
    儀新知 2007(160):7-17.
    20. Liu K-C, Cheng C-M, Chen C-L, Tsuei K-D, Luh D-A. Photoemission
    study of Ag films on Cu (111) grown with a two-step method. 2009.
    21. NEW JEIN INDUSTRIAL CO L. http://www.newjein.com.tw/. In.
    22. LMGP-Suite Suite of Programs for the interpretation of X-ray Experiments
    bJlaBB, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint
    Martin d'Hères, France. WWW: http://www.inpg.fr/LMGP and
    http://www.ccp14.ac.uk/tutorial/lmgp/. In.
    23. MATTER EAAa.
    http://aluminium.matter.org.uk/content/html/eng/default.asp?catid=57&pageid=99262
    2465 In.
    24. Elmer JW, Palmer TA, Specht ED. In situ observations of sigma phase
    dissolution in 2205 duplex stainless steel using synchrotron X-ray diffraction.
    Materials Science and Engineering: A 2007;459(1–2):151-155.
    25. Ringer S, Prasad K, Quan G. Internal co-precipitation in aged Al–1.7 Cu–
    0.3 Mg–0.1 Ge (at.%) alloy. Acta Materialia 2008;56(9):1933-1941.
    26. Charbhai N, Murty B, Sankaran S. Characterization of microstructure and
    precipitation behavior in Al-4Cu-xTiB2 in-situ composite. Transactions of the Indian
    Institute of Metals 2011;64(1-2):117-121.
    27. Hu S, Baskes M, Stan M, Chen L. Atomistic calculations of interfacial
    energies, nucleus shape and size of< i> θ</i>′ precipitates in Al–Cu alloys. Acta
    Materialia 2006;54(18):4699-4707.
    28. Biswas A, Siegel DJ, Wolverton C, Seidman DN. Precipitates in Al–Cu
    alloys revisited: Atom-probe tomographic experiments and first-principles
    calculations of compositional evolution and interfacial segregation. Acta Materialia
    2011;59(15):6187-6204.
    29. Bourgeois L, Dwyer C, Weyland M, Nie J-F, Muddle BC. Structure and
    energetics of the coherent interface between the θ ′ precipitate phase and
    aluminium in Al–Cu. Acta Materialia 2011;59(18):7043-7050.
    30. Li D, Chen L. Computer simulation of stress-oriented nucleation and
    growth of< i> θ </i> ′ precipitates inAl–Cu alloys. Acta Materialia
    1998;46(8):2573-2585.
    31. Xu X-C, Liu Z-Y, Li Y-T, Dang P, Zeng S-M. Evolution of precipitates of
    Al-Cu alloy during equal-channel angular pressing at room temperature. Transactions
    of Nonferrous Metals Society of China 2008;18(5):1047-1052.
    32. Vander Voort GF. Metallography: Principles and Practices: ASM
    International; 1999.
    33. 張暘青. 民航客機機翼前緣整流罩之超塑成形材料研究; Superplastic
    Material Research of Commercial Airliner Wing's Leading Edge Fairing Covers;
    2011.
    34. 甘晏璇, 曾信智. 奈米級析出物強化熱軋汽車用鋼開發 (一). 2010.
    35. Vaithyanathan V, Wolverton C, Chen L. Multiscale modeling of< i> θ
    </i>< sup> ′ </sup> precipitation in Al – Cu binary alloys. Acta Materialia
    2004;52(10):2973-2987.

    QR CODE
    :::