| 研究生: |
吳俞潔 Yu-Jie Wu |
|---|---|
| 論文名稱: |
臺灣股票市場異常超額報酬之預測性 The Forecastability of Abnormal Returns in Taiwan’s Equity Market |
| 指導教授: |
徐之強
Chih-Chiang Hsu 廖志興 Chih-Hsing Liao |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
管理學院 - 經濟學系 Department of Economics |
| 論文出版年: | 2025 |
| 畢業學年度: | 113 |
| 語文別: | 中文 |
| 論文頁數: | 69 |
| 中文關鍵詞: | 效率市場假說 、異常超額報酬 、臺灣加權指數 、機器學習預測模型 |
| 外文關鍵詞: | Efficient Market Hypothesis, The anomalous expected market return, Taiwan Stock Exchange Weighted Stock Index, Machine learning predictive model |
| 相關次數: | 點閱:24 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Fama (1970) 一文提出效率市場假說,認為有效率的資本市場沒有資產錯誤定價獲利的機會,然而這與現實情況有所不同,過去諸多文獻探討股票市場屬於何種效率市場,但其文獻多使用單一變數,本文同時使用總體經濟面、市場資金面與股價技術面變數為預測因子預測臺灣股票市場超額報酬率。
本文實證結果發現,被篩選出最能有效預測臺灣股市超額報酬之變數以臺灣股票市場資金面與股價技術面預測因子為主。整體而言,預測模型中簡單組合法預測表現最為傑出,接著為組合彈性網路法與平均預測法,其中組合彈性網路法與簡單組合法之變異度表現最佳、預測累積年化報酬率以簡單組合法與主成分分析法最高。
本文預測結果,機器學習預測模型可有效捕捉股票市場超額報酬,然而當前所擁有資訊隨著時間經過不斷進行校正,使得向前預測二個月與三個月之預測報酬率最高,然而隨著預測期數越長,資訊會逐漸反應於股價上,累積超額報酬率越低,當前所擁有資訊僅能於短期內獲取額外的超額報酬。
Fama (1970) proposed the efficient market hypothesis, arguing that an efficient capital market has no opportunity to gain any profit from mispricing. However, in the past, many literatures have discussed what kind of efficient market the stock market belongs to, but many literatures used the single part of variables, we are different from the past, simultaneously uses the macroeconomic, market capital, and technical variables as predictors to predict the excess return rate of the Taiwan stock market.
The empirical results found that the selected variables that are most effective in predicting excess returns in the Taiwan stock market are mainly cash flow and technical variables. Overall, the simple combination method has the best forecasting performance among forecasting models, then the combination elastic net method and the average forecasting method, combined elastic network method especially had the best forecasting performance in recession.
The most important results this article observes is that the information is continuously corrected over time, making the two-month and three-month forecast returns the highest. However, the longer ahead forecast period we predict, the more information will gradually be reflected in the stock price. In other words, the information just can only obtain additional excess returns in the short term.
Akaike, H. (1973), “Information theory and an extension of the maximum likelihood principle, in Boris N. Petrov, and Frigyes Csaki, eds”, Proceedings of the 2nd International Symposium on Information Theory (Akadémiai Kiadó, Budapest).
Campbell, J. Y., and S. B. Thompson (2008), “Predicting excess stock returns out of sample: Can anything beat the historical average?”, Review of Financial Studies, 21, 1509-1531.
Cakici, N., Chan, K., and Topyan, K. (2015), “Cross-sectional stock return predictability in China”, The European Journal of Finance, 23, (7-9), 581-605.
Choi, J. J., Hauser, S., and Kopecky, K. J. (1999), “Does the stock market predict real activity? Time series evidence from the G-7 countries”, Journal of Banking and Finance, 23(12), 1771-1792.
Cochrane, J. H. (1895), “Asset Pricing: Revised Edition”, Princeton University Press.
Costanza, M. C. and Afifi, A. A. (1979), “Comparison of Stopping Rules in Forward Stepwise Discriminant Analysis”, Journal of the American Statistical Association, 74(368), 777-785.
Dong, X., Y. Li, D. E. Rapach, and G. Zhou, (2022), “Anomalies and the expected market return”, The Journal of Finance, 77, 639-681.
Fama, E. F. (1970), “Efficient Capital Markets: A Review of Theory and Empirical Work”, The Journal of Finance, 25(2), 383-417.
Fama, E. F. (1990), “Stock Returns, Expected Returns, and Real Activity”, Journal of Finance, 45(4), 1089-1108.
Fama, E. F., and French, K. R. (1992), “The cross-section of expected stock returns”, Journal of Financial Economics, 47, 129-156.
Flynn, C. J., C. M. Hurvich, and J. S. Simonoff (2013), “Efficiency for regularization parameter selection in penalized likelihood estimation of misspecified models”, Journal of the American Statistical Association, 108, 1031-1043.
Gu, S., Kelly, B., and Xiu, D. (2020), “Empirical Asset Pricing via Machine Learning”, The Review of Financial Studies, 33(5), 2223-2273.
Granger, W. J., and Ramanathan, R. (1984), “Improved methods of combining forecasts”, Journal of Forecasting, 3(2), 197-204.
Hastie, T., Friedman, J., and Tibshirani, R. (2009), “The Elements of Statistical Learning”, Springer New York, 1st edition.
Hoerl, A. E., and Kennard, R. W. (2009), “Ridge Regression: Biased Estimation for Nonorthogonal Problems”, Technometrics, 12(1), 55-67.
Ludvigson, S. C., and Ng, S. (2007), “The empirical risk–return relation: A factor analysis approach”, Journal of Financial Economics, 83(1), 171-222.
Miller, T. W., and Rapach, D. E. (2013), “An intra-week efficiency analysis of bookie-quoted NFL betting lines in NYC”, Journal of Empirical Finance, 24, 10-23.
Neely, C. J., Rapach, D. E., Jun Tu, J., and Zhou, G. (2014), “Forecasting the Equity Risk Premium: The Role of Technical Indicators”, Management Science, 60(7), 1772-1791.
Rapach, D. E. (2003), “International evidence on the long-run impact of inflation”, Journal of Money, Credit and Banking, 35(1), 23-48.
Rapach, D. E., and Zhou, G. (2009), “Differences in housing price forecastability across US states”, International Journal of Forecasting, 25(2), 351-372.
Rapach, D. E., Strauss, J. K., and Zhou, G. (2010), “Out-of-sample equity premium prediction: Combination forecasts and links to the real economy”, The Review of Financial Studies, 23(2), 821-862.
Rapach, D. E., J. K. Strauss, and Zhou, G. (2013), “International stock return predictability: What is the role of the United States?”, The Journal of Finance, 68, 1633-1658.
Rapach, D. E., and Zhou, G. (2020), “Time‐series and cross‐sectional stock return forecasting: New machine learning methods”, Machine learning for asset management: New developments and financial applications, 1-33.
Rapach, D. E., and Zhou, G. (2022), “Asset Pricing: Time-Series Predictability”, Oxford Research Encyclopedia of Economics and Finance, 1-45.
Schwert, G. W. (1990), “Stock Returns and Real Activity: A Century of Evidence”, The Journal of Finance, 45(4), 1237-1257.
Tibshirani, R. (1996), “Regression shrinkage and selection via the lasso”, Journal of the Royal Statistical Society: Series B (Methodological), 58, 267-288.
Welch, I., and A. Goyal (2008), “A comprehensive look at the empirical performance of equity premium prediction”, The Review of Financial Studies, 21, 1455-1508.
Zou, H., and T. Hastie (2005), “Regularization and variable selection via the elastic net”, Journal of the royal statistical society: series B (statistical methodology), 67, 301-320.
周賓凰、張宇志與林美珍 (2007),「投資人情緒與股票報酬互動關係」,證券市場發展季刊,20(1),1-39。
柯冠成、江惠君、林信助與張榮顯 (2012),「資產成長與股票報酬之關係:臺灣實證」,管理學報,29(5),465-487。
劉祥熹與涂登才 (2012),「美國股市及其總體經濟變數間關連性與波動性之研究-VEC GJR DCC-GARCH-M之模型應用」,經濟研究,48,139-189。