跳到主要內容

簡易檢索 / 詳目顯示

研究生: 蘇惟倫
Wei-Lun Su
論文名稱: 遲滯型細胞神經網路之行進波
Monotonic Traveling Wave Solutions in Delayed Cellular Neural Networks
指導教授: 許正雄
Cheng-Hsiung Hsu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 91
語文別: 英文
論文頁數: 28
中文關鍵詞: 細胞神經網路遲滯型
外文關鍵詞: Delayed Cellular Neural Networks, Monotonic Traveling Wave
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 1988年L.O.Chua and L.Yang 提出 Cellular Neural Networks , 我們用functional differential equations 來描述一維的Delayed Cellular Neural Networks ,cell上的任一點i表示 internal state,它的 dynamic除了和自己有關,也會受到feedback template 的影響 。其中feedback template 之 dynamic 是透過a 、α、β乘上它所對應的 output function 影響其 dynamic。
    我們討論general 的 output function ,以及滿足 boundary conditions 的 traveling wave, 利用 properties of characteristic equation 建構 upper and lower solution,並在Banach space上定義一個 operator,利用operator的四個特性和 monotone iteration method,證明小於臨界速度時traveling wave存在滿足boundary conditions 的 non-decreasing solution 。


    This paper is concerned with the existence of monotonic traveling wave solutions of cellular neural networks distributed in the one-dimensional integer lattice Z.
    The dynamics of each given cell depends on itself and its neighbor cells with instantaneous feedback.The profile equation of the infinite system of ordinary differential equations can be written as a functional differential equation in mixed type.
    By using the monotone iteration method, we show the existence of non-decreasing traveling solutions when the speed is negative enough.

    Abstract..................................................................1 1.Introduction............................................................2 2.PropertiesofCharacteristicEquation......................................5 3.ConstructionofUpperandLowerSolution.....................................9 4.ProofoftheMainTheorem..................................................15 5.TravelingWavesofDCNNwithStandardOutputFunction.........................20 References...............................................................27

    [1] S.-N. Chow, J. Mallet-Paret, and W. Shen,
    Traveling waves in lattice dynamical systems,
    J. Diff. Eqns., 149 (1998), pp. 248-291.
    [2] L. O. Chua,
    CNN: A Paradigm for Complexity,
    World Scientific Series on Nonlinear Science, Series A,
    Vol. 31, World Scientific, Singapore, 1998.
    [3] L. O. Chua and T. Roska,
    The CNN paradigm,
    IEEE Trans. Circuits Syst., 40 (1993), pp. 147-156.
    [4] L. O. Chua and L. Yang,
    Cellular neural networks: Theory,
    IEEE Trans. Circuits Syst., 35 (1988), pp. 1257-1272.
    [5] L. O. Chua and L. Yang,
    Cellular neural networks: Applications,
    IEEE Trans. Circuits Syst., 35 (1988), pp. 1273-1290.
    [6] T. Erneux and G. Nicolis,
    Propagation waves in discrete bistable reaction-diffusion
    systems, Physica D, 67 (1993), pp. 237-244.
    [7] I. Gyori and G. Ladas,
    Oscillating Theory of Delay Differential Equations with
    Applications, Oxford University Press, Oxford, 1991.
    [8] C.-H. Hsu and S.-S. Lin,
    Existence and multiplicity of traveling waves in a lattice
    dynamical system,
    J. Diff. Eqns., 164 (2000), pp. 431-450.
    [9] C.-H. Hsu, S.-S. Lin and W. Shen,
    Traveling waves in cellular neural networks,
    Internat. J. Bifur. and Chaos, 9 (1999), pp. 1307-1319.
    [10] C.-H. Hsu and S.-Y. Yang,
    On camel-like traveling wave solutions in
    cellular neural networks,
    preprint, 2002.
    [11] H. Hudson and B. Zinner,
    Existence of traveling waves for a generalized discrete
    Fisher''s equations,
    Comm. Appl. Nonlinear Anal., 1 (1994), pp. 23-46.
    [12] J. Juang and S.-S. Lin,
    Cellular neural networks: mosaic pattern and spatial chaos,
    SIAM J. Appl. Math., 60 (2000), pp. 891-915.
    [13] J. P. Keener,
    Propagation and its failure in coupled systems of
    discrete excitable cells,
    SIAM J. Appl. Math., 47 (1987), pp. 556-572.
    [14] J. Mallet-Paret,
    The global structure of traveling waves in spatial
    discrete dynamical systems,
    J. Dyn. Diff. Eqns., 11 (1999), pp. 49-127.
    [15] L. Orzo, Z. Vidnyanszky, J. Hamori and T. Roska,
    CNN model of the feature linked synchronized activities
    in the visual thalamo-cortical system,
    Proc. 1996 Fourth IEEE Int. Workshop on CNN and
    Their Applications, pp. 291-296, Seville, Spain,
    June 24-26, 1996.
    [16] P. Thiran, K. R. Crounse, L.O. Chua, and M. Hasler,
    Pattern formation properties of autonomous cellular neural networks,
    IEEE Trans. Circuit Syst., 42 (1995), pp. 757-774.
    [17] P. Thiran,
    Dynamics and Self-Organization of Locally Coupled
    Neural Networks,
    Presses Polytechniques et Universitaires Romandes, Lausanne,
    Switzerland, 1997.
    [18] F. Werblin, T. Roska and L.O. Chua,
    The analogic cellular neural network as a bionic eye,
    Internat. J. Circuit Theory Appl., 23 (1994), pp. 541-569.
    [19] P. Weng and J. Wu,
    Deformation of traveling waves in delayed cellular neural
    networks, preprint, 2001.
    [20] J. Wu and X. Zou,
    Asymptotical and periodic boundary value problems of mixed FDEs
    and wave solutions of lattice differential equations,
    J. Diff. Eqns., 135 (1997), pp. 315-357.
    [21] B. Zinner,
    Existence of traveling wavefront solutions for discrete
    Nagumo equation, it J. Diff. Eqns., 96 (1992), pp. 1-27.

    QR CODE
    :::