跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝博文
Po-Wen Hsieh
論文名稱: 邊界層和內部層問題的穩定化有限元素法
Stabilized finite element methods for solving boundary and interior layer problems
指導教授: 楊肅煜
Suh-Yuh Yang
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 數學系
Department of Mathematics
畢業學年度: 99
語文別: 英文
論文頁數: 98
中文關鍵詞: 最小平方有限元素法無殘餘泡狀函數穩定化有限元素法有限元素法邊界層和內部層磁流體方程組反應-對流-擴散方程對流-擴散方程
外文關鍵詞: least-squares finite element methods, residual-free bubbles, stabilized finite element methods, finite element methods, boundary and interior layers, magnetohydrodynamic equations, reaction-convection-diffusion equations, convection-diffusion equations
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文主要發展穩定化的有限元素法求解邊界層和內部層問題,我們提出了兩種新型的穩定化方法。第一種方法是求解對流佔優對流-擴散問題的泡狀函數穩定化最小平方有限元素法。首先,依據最小平方有限元素法的概念引入原未知變數的梯度向量為新增變數,將原始二階偏微分方程式轉換成一階偏微分方程組,接著針對每一個未知變數,利用類似無殘餘泡狀函數法的方式將最小平方有限元素法的線性基底加入具穩定作用的泡狀函數。其中泡狀函數在每一個單元上滿足某個二階偏微分方程式及零單元邊界值條件,實際運算時則採取某種加勒金/最小平方型穩定化方法求取此無殘餘泡狀函數之近似解。在這樣的策略下不僅可以保有最小平方有限元素法的優勢(所形成的矩陣具對稱正定性),亦具有無殘餘泡狀函數法的特徵(無需再選擇穩定化參數)。我們進行一系列的數值模擬實證泡狀函數穩定化最小平方有限元素法的高度效率,同時比較了該方法和原始最小平方有限元素法的精確度和計算成本。我們發現在對流佔優的情況下,泡狀函數穩定化最小平方有限元素法的精確度和穩定性都比原始最小平方有限元素法高,即使原始最小平方有限元素法使用較為細密的網格或較為高階的基底都無法達到相同的效果。最後,我們成功地將這種新型的泡狀函數穩定化最小平方有限元素法應用到某個源自靜態不可壓縮管狀磁流體的對流佔優對流-擴散方程組上。
    第二種穩定化方法是求解反應-對流-擴散問題的新型加勒金穩定化有限元素法,其中該反應-對流-擴散問題具有一個極小擴散係數與一個極大反應係數。我們明確定義其穩定化參數,經由一個特殊內插技巧推導出 與 模下的誤差估計,並建立該估計與擴散係數、對流場大小、反應係數和網格參數之間的明確關聯。在數值計算上,我們將此新方法與文獻上的兩種穩定化有限元素法比較,結果顯示在反應-對流佔優的情況下,此新型穩定化方法具有高精確度與高穩定性。


    This thesis is devoted to developing stabilized finite element methods (FEMs) for solving boundary and interior layer problems. We propose and analyze two new stabilized FEMs. The first one is the bubble-stabilized least-squares finite element method (LSFEM) which is applied to solve scalar convection-dominated convection-diffusion problems. We first convert the second-order convection-diffusion problem into a first-order system formulation by introducing the gradient of solution as a new unknown. Then the LSFEM using continuous piecewise linear elements enriched with residual-free bubbles for all unknowns is applied to solve the first-order mixed problem. The residual-free bubble functions are assumed to strongly satisfy the associated homogeneous second-order convection-diffusion equations in the interior of each element, up to the contribution of the linear part, and vanish on the element boundary. To implement this two-level least-squares approach, a stabilized method of Galerkin/least-squares type is used to approximate the residual-free bubble functions. This bubble-stabilized LSFEM not only inherits the advantages of the primitive LSFEM, such as the resulting linear system being symmetric and positive definite, but also exhibits the characteristics of the residual-free bubble method without involving any stabilization parameters. Several numerical experiments are given to demonstrate the effectiveness of the proposed bubble-stabilized LSFEM. The accuracy and computational cost of this method are also compared with those of the primitive LSFEM. We find that for a small diffusivity, the bubble-stabilized LSFEM is much better able to capture the nature of layer structure in the solution than the primitive LSFEM, even if the primitive LSFEM uses a very fine mesh or higher-order elements. In other words, the bubble-stabilized LSFEM provides a significant mprovement, with a lower computational cost, over the primitive LSFEM for solving convection-dominated problems. Finally, we extend this approach to a coupled system of convection-diffusion equations arising from the steady incompressible magnetohydrodynamic duct flow problem with a transverse magnetic field at high Hartmann numbers.
    The second method that we propose in this thesis is a new stabilized FEM in the Galerkin formulation. We analyze the method using continuous piecewise linear elements for solving 2D reaction-convection-diffusion equations. The equation under consideration is reaction-convection-dominated, involving a small diffusivity and a large reaction coefficient. In addition to giving error estimates of the approximations in $L^2$ and $H^1$ norms, we explicitly establish the dependence of error bounds on the diffusivity, the module of convection field, the reaction coefficient and the mesh size. Several numerical examples exhibiting boundary layers are given to illustrate the high accuracy and stability of the newly proposed stabilized FEM. The results obtained are also compared with those of existing stabilized FEMs.

    1 Introduction ..........1 2 Scalar Convection-Diffusion Equations ..........5 2.1 Introduction ..........5 2.2 The first-order system formulation and the primitive LSFEM ..........7 2.3 A stabilized LSFEM with residual-free bubbles ..........10 2.4 Numerical experiments ..........13 2.5 Summary and conclusions ..........28 3 A Coupled System of Convection-Diffusion Equations 32 3.1 Introduction ..........32 3.2 Problem formulation ..........33 3.3 The first-order system formulation ..........35 3.4 The primitive LSFEM ..........36 3.5 A bubble-stabilized LSFEM ..........40 3.6 Numerical experiments .......... 44 3.7 Summary and conclusions ..........48 4 Scalar Reaction-Convection-Diffusion Equations ..........60 4.1 Introduction ..........60 4.2 The new stabilized FEM ..........62 4.3 Error estimates of the new stabilized FEM ..........66 4.4 Numerical experiments ..........68 4.5 Summary and conclusions ..........80

    [1] K. E. Barrett, Duct flow with a transverse magnetic field at high Hartmann numbers, Int.
    J. Numer. Meth. Engrg., 50 (2001), pp. 1893-1906.
    [2] P. B. Bochev and M. D. Gunzburger, Analysis of least-squares finite element methods for
    the Stokes equations, Math. Comp., 63 (1994), pp 479-506.
    [3] P. B. Bochev and M. D. Gunzburger, Finite element methods of least-squares type, SIAM
    Rev., 40 (1998), pp 789-837.
    [4] P. B. Bochev and M. D. Gunzburger, Least-Squares Finite Element Methods, Appl. Math.
    Sci. 166, Springer, New York, 2009.
    [5] P. B. Bochev, M. D. Gunzburger, and R. B. Lehoucq, On stabilized finite element methods
    for the Stokes problem in the small time step limit, Internat. J. Numer. Methods Fluids, 53
    (2007), pp. 573-597.
    [6] C. Bozkayaa and M. Tezer-Sezgin, Fundamental solution for coupled magnetohydrodynamic
    flow equations, J. Comput. Appl. Math., 203 (2007), pp. 125-144.
    [7] S. C. Brenner and L. R. Scott, The Mathematical Theory of Finite Element Methods,
    Springer-Verlag, New York, 1994.
    [8] F. Brezzi and M. Fortin, Mixed and Hybrid Finite Element Methods, Springer-Verlag, New
    York, 1991.
    [9] F. Brezzi, L. P. Franca, A. Russo, Further considerations on residual-free bubbles for
    advective-diffusive equations, Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 25-
    33.
    [10] F. Brezzi, T. J. R. Hughes, L. D. Marini, A. Russo, and E. S¨uli, A priori error analysis of
    residual-free bubbles for advection-diffusion problems, SIAM J. Numer. Anal., 36 (1999), pp.
    1933-1948.
    [11] F. Brezzi and A. Russo, Choosing bubbles for advection-diffusion problems, Math. Models
    Methods Appl. Sci., 4 (1994), pp. 571-587.
    [12] A. N. Brooks and T. J. R. Hughes, Streamline upwind/Petrov-Galerkin formulations for
    convective dominated flows with a particular emphasis on the incompressible Navier-Stokes
    equations, Comput. Methods Appl. Mech. Engrg., 32 (1982), pp. 199-259.
    [13] Z. Cai, R. Lazarov, T. A. Manteuffel, and S. F. McCormick, First-order system least squares
    for second-order partial differential equations: Part I, SIAM J. Numer. Anal., 31 (1994), pp.
    1785-1799.
    [14] Z. Cai, T. A. Manteuffel, and S. F. McCormick, First-order system least squares for secondorder
    partial differential equations: Part II, SIAM J. Numer. Anal., 34 (1997), pp. 425-454.
    [15] A. Cangiani and E. S¨uli, Enhanced RFB method, Numer. Math., 101 (2005), pp. 273-308.
    [16] C. L. Chang, Finite element approximation for grad-div type systems in the plane, SIAM J.
    Numer. Anal., 29 (1992), pp. 452-461.
    [17] C. L. Chang and B.-N. Jiang, An error analysis of least-squares finite element method of
    velocity-pressure-vorticity formulation for Stokes problem, Comput. Methods Appl. Mech.
    Engrg., 84 (1990), pp. 247-255.
    [18] C. L. Chang and S.-Y. Yang, Analysis of the L2 least-squares finite element method for the
    velocity-vorticity-pressure Stokes equations with velocity boundary conditions, Appl. Math.
    Comput., 130 (2002), pp. 121-144.
    [19] C. L. Chang, S.-Y. Yang, and C.-H. Hsu, A least-squares finite element method for incompressible
    flow in stress-velocity-pressure version, Comput. Methods Appl. Mech. Engrg., 128
    (1995), pp. 1-9.
    [20] P. G. Ciarlet, The Finite Element Method for Elliptic Problems, North-Holland Publishing
    Company, Amsterdam, 1987.
    [21] J. M. Deang and M. D. Gunzburger, Issues related to least-squares finite element methods
    for the Stokes equations, SIAM J. Sci. comput., 20 (1998), pp. 878-906.
    [22] H.-Y. Duan, A new stabilized finite element method for solving the advection-diffusion equations,
    J. Comput. Math., 20 (2002), pp. 57-64.
    [23] H.-Y. Duan, P.-W. Hsieh, R. C. E. Tan, and S.-Y. Yang, Analysis of a new stabilized finite
    element method for the reaction-convection-diffusion equations with a large reaction
    coefficient, submitted for publication, 2011.
    [24] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite Elements and Fast Iterative Solvers:
    with Applications in Incompressible Fluid Dynamics, Oxford University Press, New York,
    2005.
    [25] J. M. Fiard, T. A. Manteuffel, and S. F. McCormick, First-order system least squares
    (FOSLS) for convection-diffusion problems: Numerical results, SIAM J. Sci. Comput., 19
    (1998), pp. 1958-1979.
    [26] L. P. Franca and C. Farhat, Bubble functions prompt unusual stabilized finite element methods,
    Comput. Methods Appl. Mech. Engrg., 123 (1995), pp. 299-308.
    [27] L. P. Franca and S. L. Frey, Stabilized finite element methods: II. the incompressible Navier-
    Stokes equations, Comput. Methods Appl. Mech. Engrg., 99 (1992), pp. 209-233.
    [28] L. P. Franca, S. L. Frey, and T. J. R. Hughes, Stabilized finite element methods: I. application
    to the advective-diffusive model, Comput. Methods Appl. Mech. Engrg., 95 (1992), pp. 253-
    276.
    [29] L. P. Franca, G. Hauke, and A. Masud, Revisiting stabilized finite element methods for the
    advective-diffusive equation, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 1560-
    1572.
    [30] L. P. Franca and F.-N. Hwang, Refining the submesh strategy in the two-level finite element
    method: application to the advection-diffusion equation, Internat. J. Numer. Methods Fluids,
    39 (2002), pp. 161-187.
    [31] L. P. Franca and A. P. Macedo, A two-level finite element method and its application to the
    Helmholtz equation, Internat. J. Numer. Methods Engrg., 43 (1998), pp. 23-32.
    [32] L. P. Franca, A. L. Madureira, and F. Valentin, Towards multiscale functions: enriching
    finite element spaces with local but not bubble-like functions, Comput. Methods Appl. Mech.
    Engrg., 194 (2005), pp. 3006-3021.
    [33] L. P. Franca, A. Nesliturk, and M. Stynes, On the stability of residual-free bubbles for
    convection-diffusion problems and their approximation by a two-level finite element method,
    Comput. Methods Appl. Mech. Engrg., 166 (1998), pp. 35-49.
    [34] L. P. Franca, J. V. A. Ramalho, and F. Valentin, Multiscale and residual-free bubble functions
    for reaction-advection-diffusion problems, Internat. J. Multiscale Comput. Engrg., 3 (2005),
    pp. 297-312.
    [35] L. P. Franca and A. Russo, Deriving upwinding, mass lumping and selective reduced integration
    by residual-free bubbles, Appl. Math. Lett., 9 (1996), pp. 83-88.
    [36] L. P. Franca and F. Valentin, On an improved unusual stabilized finite element method for
    the advective-reactive-diffusive equation , Comput. Methods Appl. Mech. Engrg., 190 (2000),
    pp. 1785-1800.
    [37] V. Girault and P. A. Raviart, Finite Element Methods for Navier-Stokes Equations: Theory
    and Algorithms, Springer-Verlag, New York, 1986.
    [38] I. Harari, Stability of semidiscrete formulations for parabolic problems at small time steps,
    Comput. Methods Appl. Mech. Engrg., 193 (2004), pp. 1491-1516.
    [39] I. Harari and T. J. R. Hughes, What are C and h?: inequalities for the analysis and design
    of finite element methods, Comput. Methods Appl. Mech. Engrg., 97 (1992), pp. 157-192.
    [40] T. Y. Hou and X.-H. Wu, A multiscale finite element method for elliptic problems in composite
    materials and porous media, J. Comput. Phys., 134 (1997), pp. 169-189.
    [41] P.-W. Hsieh and S.-Y. Yang, On efficient least-squares finite element methods for convectiondominated
    problems, Comput. Methods Appl. Mech. Engrg., 199 (2009), pp. 183-196.
    [42] P.-W. Hsieh and S.-Y. Yang, A bubble-stabilized least-squares finite element method for
    steady MHD duct flow problems at high Hartmann numbers, J. Comput. Phys., 228 (2009),
    pp. 8301-8320.
    [43] P.-W. Hsieh and S.-Y. Yang, A novel least-squares finite element method enriched with
    residual-free bubbles for solving convection-dominated problems, SIAM J. Sci. Comput., 32
    (2010), pp. 2047-2073.
    [44] T. J. R. Hughes, L. P. Franca, and G. M. Hulbert, A new finite element formulation for computational
    fluid dynamics: VIII. the Galerkin/least-squares method for advective-diffusive
    equations, Comput. Methods Appl. Mech. Engrg., 73 (1989), pp. 173-189.
    [45] B.-N. Jiang, The Least-Squares Finite Element Method, Springer-Verlag, Berlin, 1998.
    [46] C. Johnson, Numerical Solution of Partial Differential Equations by the Finite Element
    Method, Cambridge University Press, Cambridge, UK, 1987.
    [47] R. D. Lazarov, L. Tobiska, and P. S. Vassilevski, Streamline diffusion least-squares mixed
    finite element methods for convection-diffusion problems, East-West J. Numer. Math., 5
    (1997), pp. 249-264.
    [48] R. D. Lazarov and P. S. Vassilevski, Least-squares streamline diffusion finite element approximations
    to singularly perturbed convection-diffusion problems, in Analytical and Numerical
    Methods for Singularly Perturbed Problems, (L. G. Vulkov, J. J. H. Miller, and G. I. Shishkin,
    eds.), Nova Science Publishers, Hauppauge, NY, 2000, pp. 83-94.
    [49] K. W. Morton, Numerical Solution of Convection-Diffusion Problems, Chapman & Hall,
    London, UK, 1996.
    [50] A. I. Nesliturk and M. Tezer-Sezgin, The finite element method for MHD flow at high Hartmann
    numbers, Comput. Methods Appl. Mech. Engrg., 194 (2005), pp. 1201-1224.
    [51] A. I. Nesliturk and M. Tezer-Sezgin, Finite element method solution of electrically driven
    magnetohydrodynamic flow, J. Comp. Appl. Math., 192 (2006), pp. 339-352.
    [52] A. I. Pehlivanov, G. F. Carey, and R. D. Lazarov, Least-squares mixed finite elements for
    second-order elliptic problems, SIAM J. Numer. Anal., 31 (1994), pp. 1368-1377.
    [53] H.-G. Roos, M. Stynes, and L. Tobiska, Numerical Methods for Singularly Perturbed Differential
    Equations, Springer, New York, 1996.
    [54] R. Scandiuzzi and B. A. Schrefler, FEM in steady MHD duct flow problems, Internat. J.
    Numer. Methods Engrg., 30 (1990), pp. 647-659.
    [55] B. Singh and J. Lal, FEM in MHD channel flow problems, Internat. J. Numer. Methods
    Engrg., 18 (1982), pp. 1104-1111.
    [56] B. Singh and J. Lal, FEM for unsteady MHD flow through pipes with arbitrary wall conductivity,
    Internat. J. Numer. Methods Fluids, 4 (1984), pp. 291-302.
    [57] M. Stynes, Steady-state convection-diffusion problems, Acta Numerica, 2005, pp. 445-508.

    QR CODE
    :::