跳到主要內容

簡易檢索 / 詳目顯示

研究生: 戴廷晃
Ting-huang Tai
論文名稱: 社會凝聚機能與社群結構動態對爆紅現象之影響-網絡玻色-愛因斯坦凝聚原理之應用
指導教授: 蔡明宏
Ming-hung Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 管理學院 - 企業管理學系
Department of Business Administration
畢業學年度: 99
語文別: 中文
論文頁數: 205
中文關鍵詞: ABM模型玻色-愛因斯坦凝聚社會網絡分析法爆紅
外文關鍵詞: Agent-Based Model, Bose-Einstein condensation, social network analysis method, Internet Meme
相關次數: 點閱:4下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 社會科學令人訝異的與自然科學有許多相似的特性,例如冪次法則,在自然科學界與社會科學界都有許多現象背後的統計關係服從冪次法則。其他社會現象例如政府組織、金融市場、經濟自我組織機制等等都可能是自我組織而成的結構,遵循著未知的自然法則,因此利用自然科學研究所發展出來的模擬或是統計方法來預測社會現象的因果似乎變得越來越可行。Bianconi與Barabasi兩位學者將社會網絡中集線器(Hub)的特徵與物理學中的玻色-愛因斯坦凝聚現象相結合,發展出Bianconi-Barabasi模型,奠定可靠的社會網絡分析方法理論,本研究嘗試將社會中的爆紅現象轉化成網絡架構,並以此為出發點,除了原有的BB模型之外,也加入Guimera等學者提出有關團隊組隊機制的Team Assembly理論,延伸網絡中代理人的行為,建立四種不同的以代理人為基礎的模擬模型(ABM):典型BB模型、BB-TA模型與具有學習行為的BB-TA D2N、D2D等模型,企圖了解爆紅現象的原貌,藉由模擬以上的ABM模型,操弄各種不同的社會參數,研究觀察爆紅現象背後的機制與過程,來尋找可能發生爆紅的條件與社會情境,研究結果發現,社會氛圍與社會的創作活力可能是影響爆紅現象背後機制的兩大要件,這兩項要件的交互組合形成了不同的社會情境,本研究依照不同的社會情境對企業界提出實務上的建議。


    Social science and natural science surprisingly have many similar features such as the power law. Many phenomena in both social science and natural science are common and the statistics behind follow the power law. There are other social phenomena such as government organizations, financial markets, economic self-organization mechanisms, etc., may be made of self-organized structure, followed the unknown laws of nature, using natural science simulation or statistical methods to predict cause and effect of social phenomena seems become more feasible. Bianconi and Barabasi combined Hub characteristics in the social network and Bose - Einstein condensation in physics with the development of the Bianconi-Barabasi model, providing a reliable social network analysis method. In strat of this study, we tried to turn the social phenomena, Internet Meme into the social network sturcture. In addition to the original BB model, this study joined the Team Assembly theory, extending the agents’ behavior in the network, establishing four different types of agent-based model (ABM): BB model, BB-TA model and BB-TA D2N, D2D models with learning behavior. This study simulated over the ABM models and manipulated a variety of social parameters in an attempt to understand the mechanisms and processes behind the Internet Meme to find the possible social conditions and social contexets. The results found that the social atmosphere and the creative vitality of society may affect the mechanisms behind the phenomenon of Internet Meme. The interaction of these two elements forms different social contexts. We make practical recommendations to business according to the study of different social context.

    中文摘要 i 英文摘要 ii 誌謝 iii 目錄 iv 圖目錄 vi 表目錄 x 第一章 緒論 1 第一節 研究背景 1 第二節 研究動機 8 第三節 研究問題 16 第二章 文獻回顧 18 第一節 文化創意產業演進的網絡動力觀點 18 第二節 社會網絡中的凝聚現象 27 第三節 領先者變動的現象 37 第四節 化學勢在社會情境上的意涵 42 第五節 專業社群組隊機制與團隊表現之間的關係 46 第六節 鑲嵌在社會情境中的學習理論 53 第三章 研究方法 57 第一節 研究架構 57 第二節 模型參數與社會情境的對照 59 第三節 建立以代理人為基礎的BB模型 67 第四節 BB模型之信度分析 71 第五節 BB與TA之整合與試運轉 76 第六節 建立BBTA模型的學習機制 83 第七節 系統輸出與實驗設計 87 第四章 社會創作活力與社會氛圍對爆紅現象的影響 93 第一節 社會的氛圍與創作活力對社會溝通最低障礙的作用 93 第二節 社會氛圍與社會創作活力對領導地位變動的影響 95 第三節 社會氛圍與社會創作活力對曾擔任領先者的代理人個數的影響 97 第五章 專業社群活動模式對爆紅現象的影響 102 第一節 專業社群的參與對爆紅現象的影響 102 第二節 專業社群演化時序對爆紅現象的影響 111 第三節 專業社群能力對爆紅現象的影響 118 第四節 決定專業社群人數的機率值p對爆紅現象的影響 125 第六章 專業社群社群外學習活動對爆紅現象的影響 132 第一節 仿效學習策略 132 第二節 青出於藍策略 138 第三節 超級菁英策略 144 第七章 專業社群社群內學習活動對爆紅現象的影響 150 第一節 社群內組隊模式差異對代理人環境的影響 150 第二節 社群內固定式學習對爆紅現象的作用 155 第三節 社群內動態式學習對爆紅現象的作用 164 第四節 組隊差異基礎下的D2D學習對爆紅現象的作用 169 第八章 結論與建議 175 第一節 結果與討論 175 第二節 實務上的建議 179 第三節 後續研究建議 185 第四節 研究限制 188 參考文獻 190

    中文文獻
    1. 林亦伶譯,2010,《我能猜到什麼會爆紅:看出大生意在哪裡的三步驟》,台北:大是文化。
    2. 庵野秀明監製,1995,《新世紀エヴァンゲリオン,(英譯 Neon Genesis Evangelion, 台譯 新世紀福音戰士)》,日本:GAINAX
    3. 周亞南譯,2004,《Hello Kitty:三麗鷗創造全球億萬商機的策略》,台北:商周。
    4. 姚大鈞譯,2007,《創意黏力學》,台北:大塊文化。
    5. Max Ziang著,2009,《酷日本:跟著哆啦A夢穿梭文創商機》,台北:御璽。
    6. 葉偉文譯,2007,《隱藏的邏輯:掌握群眾行為的不敗公式》,台北:天下文化。
    7. 黃娟智,2003,「澳洲文化創意產業」,文化創意產業國際研討會。
    8. 齊思賢譯,2005,《引爆趨勢》,台北:時報。
    9. 胡守仁譯,2003,《連結:讓60億人串在一起的無形網路》,台北:天下文化。
    10. 吳莉君譯,2010,《設計思考改造世界》,台北:聯經。
    11. 林泓成,2011,「認知發展論之探討--Piaget、後 Piaget、Vygotsky」。
    12. 杜明城譯,1999,《創造力》,台北:時報。
    13. 羅雅萱譯,2008,《趨勢學.學趨勢》,台北:美商麥格羅.希爾。
    14. 梁永安譯,2008,《群眾運動聖經》,台北:立緒。
    英文文獻
    1. Andriani P. and B. Mckelvey, 2007, ‘Beyond Gaussian averages: redirecting international business and management research toward extreme events and power laws,’ Journal of International Business Studies, 38:1212-1230.
    2. Bakshy, E. and Wilensky, U. (2007). ‘NetLogo Team Assembly model’. http://ccl.northwestern.edu/netlogo/models/TeamAssembly. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
    3. Barabasi A-L. and R. Albert, 1999, ‘Emergence of Scaling in Random Networks,’ Science, 286:509-512.
    4. Bianconi G. and A-L. Barabasi, 2001, ‘Bose-Einstein condensation in complex networks,’ Physical Review Letters, 86(32):5632-5635.
    5. Brown, J. S. and P. Duguid, 1991, ‘Organizational learning and community-of-practice: Toward an unified view of working, learning and innovation,’ Organization Science, 2(1): 40-57.
    6. Brown, J.S., A. Collins and P. Duguid, 1989, ‘Situated Cognition and the culture of learning,’ Educational Researcher, 18(1): 32-42.
    7. Cunningham S., 2006, What price a creative economy?, Platform papers #9. Sydney: Currency House.
    8. Godreche C. and J.M. Luck, 2010, ‘On leaders and condensates in a growing network,’ Journal of Statistical Mechanics: Theory and Experiment, arXiv:1006.0587v2.
    9. Guimera R., B. Uzzi, J, Spiro and L.A.N. Amaral, 2005, ‘Team Assembly Mechanisms Determine Collaboration Network Structure and Team Performance,’ Science, 308:697-702.
    10. Hartley J., 2005, Creative industries, Oxford: Blackwell.
    11. Howkins J., 2001, The creative economy, London: Penguin.
    12. Lave J. and E.C. Wenger, 1991 ‘Situated Learning: Legitimate Peripheral Participation,’ Cambridge University Press.
    13. Lawrence S. and C.L. Giles, 1999, ‘Accessibility of Information on the Web,’ Nature, 400:107-109.
    14. Lemoy R., E. Bertin and P. Jensen, 2010, ‘Socio-economic utility and chemical potential, ’ Physics and Society, arXiv:1010.3225v2.
    15. Potts J., S. Cunningham, J. Hartley and P. Ormerod, 2008, ‘Social network markets: A new definition of the creative industries,’ Journal of Culture Economics, 32:167-185.
    16. Probst G. and S.Borzilo, 2008, ‘Why communities of practice succeed and why they fail?’ European Management Journal, 26(5): 335-347.
    17. Sassoon D., 2006, The culture of the Europeans from 1800 to the present, London: Harper Collins.
    18. Schilling M. A., 2003, ‘Technological leapfrogging: Lessons from the U. S. Video Game console industry,’ California Management Review, 45(3): 6-32.
    19. Su G., X. Zhang and Y. Zhang, 2009, ‘The condensation in non-growing complex networks under Boltzmann limit,’ Journal of Statistical Mechanics: Disordered Systems and Neural Networks, arXiv:0912.4934v1.
    20. Watts D.J. and S.H. Strogatz, 1998, ‘Collective Dynamics of Small-World Networks,’ Nature, 393:440-442.
    21. Wilensky, U. (2005). ‘NetLogo Preferential Attachment model’. http://ccl.northwestern.edu/netlogo/models/PreferentialAttachment. Center for Connected Learning and Computer-Based Modeling, Northwestern University, Evanston, IL.
    網路資料
    1. http://zh.wikipedia.org/wiki/網路爆紅,2011/03/31
    2. http://boxofficemojo.com/alltime/world/,2011/03/01
    3. http://blog.yam.com/robertlcc/article/26344069
    4. http://zh.wikipedia.org/wiki/新世紀福音戰士,2010/09/08
    5. http://www.cca.gov.tw/business.do?method=list&id=13
    6. http://sophist4ever.pixnet.net/blog/post/21538638
    7. http://sophist4ever.pixnet.net/blog/post/21533783

    QR CODE
    :::