| 研究生: |
趙子聿 Tzu-Yu Chao |
|---|---|
| 論文名稱: |
Pt(100)修飾硫醇分子對銅沉積的影響及 修飾釕對一氧化碳氧化的活性探討 Effect of Pt(100)-modified thiol molecules on copper deposition and the activity of modified ruthenium on carbon monoxide oxidation |
| 指導教授: |
姚學麟
Shueh-Lin Yau |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 167 |
| 中文關鍵詞: | 鉑(100) 、電鍍銅 、硫醇分子 、一氧化碳氧化 |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
半導體製程中最常使用的矽晶圓通常以(100)晶面作為基底來進行後續一步步的製程,隨著線寬逐漸縮小,常常在填孔時產生缺陷,導致產品的良率降低,如果能讓每一步製程都保持整齊的排列堆積,且每一層整齊堆積,搭配有機硫化物對銅沉積的速度及方式進行控制,相信能減少缺陷的產生。本研究使用Pt(100)晶面作為載體,利用循環伏安法(Cyclic Voltammetry,CV)和掃描式電子穿隧顯微鏡(Scanning Tunneling Microscope,STM),探討Pt(100)上搭配使用無機添加物KCl,以及有機添加物-硫化物(MAA、MPS、MPA)對電鍍銅的影響以及表面的形貌變化。其中在僅有無機添加物時,可以觀察到銅在Pt(100)上有棋盤狀結構的生長方式;在電極上修飾有機硫化物後則沒有棋盤結構的產生,但銅仍然會以(100)的1 × 1結構進行堆積。其中MAA和MPS分子作為加速劑能使銅快速地進行沉積,並且在多層銅上可以觀察到轉置的現象;而MPA分子作為抑制劑完美的抑制了銅的生長,只要電位控制在一定範圍,便可以確保銅的沉積範圍可以被控制。再者,Pt(100)作為催化載體也比Pt(111)晶面效果更好,更多的活性位點,幫助一氧化碳氧化的電位負移,使電池的效率提高,搭配釕金屬的修飾,做出了極佳的催化活性。並觀察一氧化碳在Pt(100)電極上不同電位的吸附模式,3 × 7以及3 × 6結構。並觀察到釕金屬是屬於吸附成核後向上生長的金屬,並不會有層狀堆積。
The most commonly used silicon wafer in the semiconductor process is the (100) orientation, on which 3D electronic components are built. As the line width continued to shrink, producing a defect-free Cu fill is challenging. One of aspects of fabricating Cu interconnects involves a thorough understanding of Cu electroplating. Organicthiols have been indispensable ingredient in the formula in Cu deposition bath. However, the effect of these organic additives on the Cu deposition is still lacking.
In this study, cyclic voltammetry and scanning electron tunneling microscope (STM) were used to explore the electrodeposition of Cu on a well-ordered Pt(100) electrode in formula containing organosulfur compounds such as mercaptoacetic acid (MAA), mercaptopropane sulfonic acid (MPS), mercaptopropionic acid (MPA). If the formula contained only H2SO4 + CuSO4 + KCl, Cu was deposited in a quasi layered fashion. High resolution STM imaging revealed atomic structures on this smooth Cu deposit, where Cu film arranged in a chessboard structure on Pt(100). All organic additives used in this study resulted in different textures of the Cu deposit and no chessboard structure was observed.
Among these additives, MAA and MPS modifiers on the Pt(100) electrode resulted in thicker Cu film than that produced by MPA in the same Cu plating bath. This contrast is reasoned by the reduction rate of Cu2+ at the modified Pt(100) electrode and the segregation rate of additive from the Pt substrate onto the Cu deposit.
Moreover, the electrocatalytic activity of Pt(100) toward the oxidation of carbon monoxide was examined. The as-produced Pt(100) electrode is more active than Pt(111) crystal face, as judged from a negative shift of the stripping potential of carbon monoxide. The poisoning effect of CO on Pt catalyst can be alleviated by depositing submonolayer ruthenium species. The spatial structures of CO on Pt(100) were examined by molecular resolution STM imaging.
(1) Nagy, Z., Blaudeau, J. P., Hung, N. C., Curtiss, L. A., & Zurawski, D. J. (1995). Chloride ion catalysis of the copper deposition reaction. Journal of The Electrochemical Society, 142(6), L87.
(2) Huynh, T. M. T., Hai, N. T. M., & Broekmann, P. (2013). Quasi-reversible interaction of MPS and chloride on Cu (100) studied by in situ STM. Journal of the electrochemical society, 160(12), D3063.
(3) Lin, C. C., Hu, C. C., Lu, Y. T., & Guo, R. H. (2018). Reconsider the depolarization behavior of copper electrodeposition in the presence of 3-mercapto-1-propanesulfonate. Electrochemistry Communications, 91, 75-78.
(4) Lu, J. (2017). Adsorption of Benzyl Viologen and Polyethylene Glycol and their Displacement by 3-Mercapto-1 Propanesulfonate During Copper Electrodeposition (Doctoral dissertation, University of New Hampshire).
(5) Spendelow, J. S., Xu, Q., Goodpaster, J. D., Kenis, P. J., & Wieckowski, A. (2007). The role of surface defects in CO oxidation, methanol oxidation, and oxygen reduction on Pt (111). Journal of the Electrochemical Society, 154(12), F238.
(6) Waszczuk, P., Lu, G. Q., Wieckowski, A., Lu, C., Rice, C., & Masel, R. I. (2002). UHV and electrochemical studies of CO and methanol adsorbed at platinum/ruthenium surfaces, and reference to fuel cell catalysis. Electrochimica Acta, 47(22-23), 3637-3652.
(7) Koper, M. T. M., Lebedeva, N. P., & Hermse, C. G. M. (2002). Dynamics of CO at the solid/liquid interface studied by modeling and simulation of CO electro-oxidation on Pt and PtRu electrodes. Faraday discussions, 121, 301-311.
(8) Borg, A., Hilmen, A. M., & Bergene, E. (1994). STM studies of clean, CO-and O2-exposed Pt (100)-hex-R0. 7. Surface science, 306(1-2), 10-20.
(9) Zolfaghari, A., & Jerkiewicz, G. (1997). The temperature dependence of hydrogen and anion adsorption at a Pt (100) electrode in aqueous H2SO4 solution. Journal of Electroanalytical Chemistry, 420(1-2), 11-15.
(10) Sashikata, K., Sugata, T., Sugimasa, M., & Itaya, K. (1998). In situ scanning tunneling microscopy observation of a porphyrin adlayer on an iodine-modified Pt (100) electrode. Langmuir, 14(10), 2896-2902.
(11) Vogel, R., & Baltruschat, H. (1991). Iodine adlattice on Pt (100) observed by STM. Surface science, 259(3), L739-L742.
(12) Wakisaka, M., Yoneyama, T., Ashizawa, S., Hyuga, Y., Ohkanda, T., Uchida, H., & Watanabe, M. (2013). Structural variations of CO adlayers on a Pt (100) electrode in 0.1 M HClO 4 solution: an in situ STM study. Physical Chemistry Chemical Physics, 15(26), 11038-11047.
(13) Kibler, L. A., Cuesta, A., Kleinert, M., & Kolb, D. M. (2000). In-situ STM characterisation of the surface morphology of platinum single crystal electrodes as a function of their preparation. Journal of Electroanalytical Chemistry, 484(1), 73-82.
(14) Gómez, R., Orts, J. M., Álvarez-Ruiz, B., & Feliu, J. M. (2004). Effect of temperature on hydrogen adsorption on Pt (111), Pt (110), and Pt (100) electrodes in 0.1 M HClO4. The Journal of Physical Chemistry B, 108(1), 228-238.
(15) Molodkina, E. B., Danilov, A. I., & Feliu, J. M. (2016). Cu UPD at Pt (100) and stepped faces Pt (610), Pt (410) of platinum single crystal electrodes. Russian Journal of Electrochemistry, 52(9), 890-900.
(16) Molodkina, E. B., Ehrenburg, M. R., Danilov, A. I., & Feliu, J. M. (2016). Two-dimensional Cu deposition on Pt (100) and stepped surfaces of platinum single crystals. Electrochimica Acta, 194, 385-393.
(17) Bittner, A. M., Wintterlin, J., & Ertl, G. (1997). Strain relief during metal-on-metal electrodeposition: a scanning tunneling microscopy study of copper growth on Pt (100). Surface science, 376(1-3), 267-278.
(18) Chen, D., Ye, J., Xu, C., Li, X., Li, J., Zhen, C., ... & Sun, S. (2012). Interaction of citrate with Pt (100) surface investigated by cyclic voltammetry towards understanding the structure-tuning effect in nanomaterials synthesis. Science China Chemistry, 55(11), 2353-2358.
(19) Fernández, P. S., Fernandes Gomes, J., Angelucci, C. A., Tereshchuk, P., Martins, C. A., Camara, G. A., ... & Tremiliosi-Filho, G. (2015). Establishing a link between well-ordered Pt (100) surfaces and real systems: how do random superficial defects influence the electro-oxidation of glycerol?. ACS Catalysis, 5(7), 4227-4236.
(20) Clavilier, J., & Armand, D. (1986). Electrochemical induction of changes in the distribution of the hydrogen adsorption states on Pt (100) and Pt (111) surfaces in contact with sulphuric acid solution. Journal of electroanalytical chemistry and interfacial electrochemistry, 199(1), 187-200.
(21) Furuya, N., Ichinose, M., & Shibata, M. (1999). Structural changes at the Pt (100) surface with a great number of potential cycles. Journal of Electroanalytical Chemistry, 460(1-2), 251-253.
(22) Rodes, A., Zamakhchari, M. A., El Achi, K., & Clavilier, J. (1991). Electrochemical behaviour of Pt (100) in various acidic media: Part I. On a new voltammetric profile of Pt (100) in perchloric acid and effects of surface defects. Journal of electroanalytical chemistry and interfacial electrochemistry, 305(1), 115-129.
(23) Abe, K., Uchida, H., & Inukai, J. (2019). Electro-oxidation of CO saturated in 0.1 M HClO4 on basal and stepped Pt single-crystal electrodes at room temperature accompanied by surface reconstruction. Surfaces, 2(2), 315-325.
(24) Matsushima, H., Taranovskyy, A., Haak, C., Gründer, Y., & Magnussen, O. M. (2009). Reconstruction of Cu (100) electrode surfaces during hydrogen evolution. Journal of the American Chemical Society, 131(30), 10362-10363.
(25) Xie, Y., Yang, Y., Muller, D. A., Abruña, H. D., Dimitrov, N., & Fang, J. (2020). Enhanced ORR kinetics on Au-Doped Pt–Cu porous films in alkaline media. Acs Catalysis, 10(17), 9967-9976.
(26) Han, J. Y. (2012). The effects of additives on the nucleation and growth kinetics of electrodeposited copper nanostructures and thin films (Doctoral dissertation, Science: Department of Chemistry).
(27) Bae, S. E., & Gewirth, A. A. (2006). In situ ec-stm studies of mps, sps, and chloride on cu (100): Structural studies of accelerators for dual damasce
(28) Yen, P., Tu, H., Wu, H., Chen, S., Vogel, W., Yau, S., & Dow, W. P. (2011). In Situ Scanning Tunneling Microscopy Study of 3-Mercaptopropanesulfonate Adsorbed on Pt (111) and Electrodeposition of Copper in 0.1 M KClO4+ 1 mM HCl (pH 3). The Journal of Physical Chemistry C, 115(16), 8110-8116.
(29) Zhao, S., Pang, K., Wang, X., & Xiao, N. (2020). Function of Sulfhydryl (–HS) Group During Microvia Filling by Copper Plating. Journal of The Electrochemical Society, 167(11), 112502.
(30) Farias, M. J., Camara, G. A., & Feliu, J. M. (2015). Understanding the CO preoxidation and the intrinsic catalytic activity of step sites in stepped Pt surfaces in acidic medium. The Journal of Physical Chemistry C, 119(35), 20272-20282.
(31) Reier, T., Oezaslan, M., & Strasser, P. (2012). Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: a comparative study of nanoparticles and bulk materials. Acs Catalysis, 2(8), 1765-1772.
(32) Wei, J., Liao, W. C., Lei, J., Yau, S., & Chen, Y. X. (2018). Electrified interfaces of Pt (332) and Pt (997) in acid containing CO and KI: as probed by in situ scanning tunneling microscopy. The Journal of Physical Chemistry C, 122(45), 26111-26119.
(33) Rudnev, A. V., Kuzume, A., Fu, Y., & Wandlowski, T. (2014). CO Oxidation on Pt (100): New insights based on combined voltammetric, microscopic and spectroscopic experiments. Electrochimica acta, 133, 132-145.
(34) Vitus, C. M., Chang, S. C., Schardt, B. C., & Weaver, M. J. (1991). In situ scanning tunneling microscopy as a probe of adsorbate-induced reconstruction at ordered monocrystalline electrodes: carbon monoxide on platinum (100). The Journal of Physical Chemistry, 95(20), 7559-7563.
(35) Soares, D. M., Wasle, S., Weil, K. G., & Doblhofer, K. (2002). Copper ion reduction catalyzed by chloride ions. Journal of Electroanalytical Chemistry, 532(1-2), 353-358.