跳到主要內容

簡易檢索 / 詳目顯示

研究生: 費單尼
TUTUKO FIRDANI
論文名稱: 大顆粒在垂直振動床中局部浮力分離機制的研究
Investigation of Intruder Local Buoyancy Force Segregation Mechanism in a Vertically Vibrated Granular Bed
指導教授: 蕭述三
Hsiau Shu San
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2024
畢業學年度: 109
語文別: 英文
論文頁數: 88
中文關鍵詞: 立式振動顆粒床浮力顆粒分離大顆粒
外文關鍵詞: Vertical Vibrated Granular Bed, Buoyancy Force, Granular Segregation, Intruder
相關次數: 點閱:19下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 流體之後處理第二好的材料是粒狀材料。如今,無論是工業界還是自然界,顆粒分離都是粉體和顆粒加工中最具挑戰性的問題。顆粒分離非常複雜,並且有許多不同的分離驅動機制。過去幾年中,一些研究人員已經完成了許多隔離機制.Huerta等人在2005年進行的一項研究發現,入侵者的隔離過程和入侵者的活動尚未完全被理解。入侵盤的偏析機制是由垂直振動引起的。通過垂直注入高頻正弦振動,可以對Pseudo2D顆粒床進行流化處理。通過將磁盤入侵者浸入顆粒床中進行的顆粒分離研究。入侵盤從底床的分離過程是由浮力推動的。通過圖像處理技術定義入侵者盤的運動,並通過高精度力傳感器測量浮力。入侵者的密度越輕,其從床底到其自由表面的加速度就越大,而較重的入侵者的加速度就越小。一旦入侵者和顆粒床之間的相對密度超過1,入侵者便開始下沉。入侵者盤的上升/下沉取決於密度,並且受到垂直振動顆粒床中發生的浮力現象的影響。入侵者的相對密度越輕,浮力越大,反之亦然。與普通液體相比,垂直振動中的浮力效應是完全不同的現象。在隔離過程中,入侵者以不同的力和速度上升。影響入侵者動力的局部浮力以非恆定速度運動。入侵盤在垂直振動下受局部浮力作用控制。由於沿床高度的不均勻顆粒溫度,在我們的系統中發生了局部浮力效應。而且,由於垂直振動的顆粒床的各向異性系統,顆粒溫度的這種梯度。


    The second most manipulated material after the fluid is granular material. Nowadays, granular segregation is the most challenging issues in powder and granular processing both industry and nature. Granular segregation is extremely complex and there are many different segregation driven mechanism. There were many segregation mechanism that have been done by some researchers in previous years. A study by Huerta et al in 2005 found that intruder segregation process and motion of the intruder were not completely understood. The segregation mechanism of the intruder disk was induced by vertical vibration. A Pseudo-2D granular bed is fluidized by injecting high frequency sinusoidal vibration vertically. The studied of the granular segregation conducted via immersion of the disk intruder into granular bed. The segregation process of intruder disk from the bottomed bed was driven by buoyancy-like force. The motion of intruder disk was defined via image processing technique and the buoyancy force was measured via high precision force sensor. The lighter density of intruder rose with larger acceleration from the bed bottom to the free surface of the bed rather than the heavier one rose with fewer acceleration. Once the relative density between the intruder and granular bed was exceed 1, the intruder started to sink. The rising/sinking of the intruder disk dependent on density and it was affected by the buoyancy force phenomena that occurred in the vertically vibrated granular bed. The buoyancy force was larger for the lighter relative density of the intruder and vice versa. The buoyancy effect in vertical vibration was completely different phenomena compared with ordinary liquid. During the segregation process intruder rise both with different force and velocity. The local buoyant force affecting the dynamic of intruder move with non-constant velocity. The intruder disk in the vertical vibration governed by local buoyancy effect. The local-buoyancy effect was occurred in our system because of unequally granular temperature along the bed height. Moreover, this gradient of the granular temperature due to anisotropic system of the vertically vibrated granular bed.

    Contents 摘要 i Abstract ii Acknowledgements iii List of Figure v List of Table vii Chapter 1 1 1.1. Introduction and Background 1 1.2. Research Motivations 10 1.3. Research Objectives 11 1.4. Thesis Structure 11 1.5. Fundamental Overview 12 Chapter 2 19 2.1. Experimental Material and Devices 19 2.1.1. Dry Granular material 19 2.1.2. Intruder Disk 21 2.1.3. Vibration Test System 24 2.1.4. Container Box equipment 26 2.2. Buoyancy Force Measurement 27 2.3. Rise Time and Granular Temperature Measurement 31 2.4. Experimental Equipment 37 Chapter 3 43 3.1. Density dependent Intruder Rise, Sink time 44 3.2. Velocity, local velocity and acceleration of Intruder 52 3.3. Local Buoyancy force of the Intruder 59 3.4. Comparison of The Local Buoyancy Force and Acceleration of The Intruder 64 3.5. Granular Temperature of the Bed and Velocity Field of the Bed 66 Chapter 4 70 Reference 72

    Alam, M., Trujillo, L., & Herrmann, H. J. (2006). Hydrodynamic theory for reverse brazil nut segregation and the non-monotonic ascension dynamics. Journal of Statistical Physics, 124(2–4), 587–623. https://doi.org/10.1007/s10955-006-9078-y
    Aminu, K. T., Jibril, M. M., Bashir, S. D., & Jumba, A. G. (2020). Experimental Investigation of Segregation of Granular Materials using the Vibrational Phenomenon. International Journal of Advances in Scientific Research and Engineering, 05(12), 193–207. https://doi.org/10.31695/ijasre.2019.33673
    Anita Mehta. (2007). Granular physics (Cambridge). New York: Cambridge University Press.
    Balista, J. A. F., & Saloma, C. (2018). Modified inelastic bouncing ball model of the Brazil nut effect and its reverse. Granular Matter, 20(3). https://doi.org/10.1007/s10035-018-0821-2
    Berzi, D., & Buzzaccaro, S. (2020). A heavy intruder in a locally-shaken granular solid. Soft Matter, 16(16), 3921–3928. https://doi.org/10.1039/c9sm02498k
    Breu, A. P. J., Ensner, H. M., Kruelle, C. A., & Rehberg, I. (2003). Reversing the Brazil-Nut Effect: Competition between Percolation and Condensation. Physical Review Letters, 90(1), 3. https://doi.org/10.1103/PhysRevLett.90.014302
    Brito, R., & Soto, R. (2009). Competition of Brazil nut effect, buoyancy, and inelasticity induced segregation in a granular mixture. European Physical Journal: Special Topics, 179(1), 207–219. https://doi.org/10.1140/epjst/e2010-01204-5
    Chaiworn, P., Chung, F. F., Wang, C. Y., & Liaw, S. S. (2011). Brazil nut effect in annular containers. Granular Matter, 13(4), 379–384. https://doi.org/10.1007/s10035-010-0234-3
    Chujo, T., Mori, O., Kawaguchi, J., & Yano, H. (2018). Categorization of Brazil nut effect and its reverse under less-convective conditions for microgravity geology. Monthly Notices of the Royal Astronomical Society, 474(4), 4447–4459. https://doi.org/10.1093/mnras/stx3092
    Chung, Y. C., Liao, H. H., & Hsiau, S. S. (2013). Convection behavior of non-spherical particles in a vibrating bed: Discrete element modeling and experimental validation. Powder Technology, 237, 53–66. https://doi.org/10.1016/j.powtec.2012.12.052
    Clement, C. P., Pacheco-Martinez, H. A., Swift, M. R., & King, P. J. (2010). The water-enhanced Brazil nut effect. Epl, 91(5). https://doi.org/10.1209/0295-5075/91/54001
    Díaz-Melián, V. L., Serrano-Muñoz, A., Espinosa, M., Alonso-Llanes, L., Viera-López, G., & Altshuler, E. (2020). Rolling away from the Wall into Granular Matter. Physical Review Letters, 125(7), 78002. https://doi.org/10.1103/PhysRevLett.125.078002
    Elperin, T., & Golshtein, E. (1997). Effects of convection and friction on size segregation in vibrated granular beds. Physica A: Statistical Mechanics and Its Applications, 247(1–4), 67–78. https://doi.org/10.1016/S0378-4371(97)00400-7
    Feng, Y., Blumenfeld, R., & Liu, C. (2019). Support of modified Archimedes’ law theory in granular media. Soft Matter, 15(14), 3008–3017. https://doi.org/10.1039/c8sm02480d
    Gutiérrez, G., Pozo, O., Reyes, L. I., Paredes, V. R., Drake, J. F., & Ott, E. (2004). Simple model for reverse buoyancy in a vibrated granular system. Europhysics Letters, 67(3), 369–375. https://doi.org/10.1209/epl/i2003-10300-3
    Gutiérrez, G., Reyes, L. I., Sánchez, I., Rodríguez, K., Idler, V., & Paredes V, R. (2005). Vibration induced airflow through granular beds and density-dependent segregation. Physica A: Statistical Mechanics and Its Applications, 356(1), 83–87. https://doi.org/10.1016/j.physa.2005.05.017
    Güttler, C., Von Borstel, I., Schräpler, R., & Blum, J. (2013). Granular convection and the Brazil nut effect in reduced gravity. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 87(4), 1–4. https://doi.org/10.1103/PhysRevE.87.044201
    Hejmady, P., Bandyopadhyay, R., Sabhapandit, S., & Dhar, A. (2012). Scaling behavior in the convection-driven Brazil nut effect. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 86(5), 1–4. https://doi.org/10.1103/PhysRevE.86.050301
    Hsiau, S.-S., & Shieh, Y.-M. (1999). Fluctuations and self-diffusion of sheared granular material flows. Journal of Rheology, 43(5), 1049–1066. https://doi.org/10.1122/1.551027
    Hsiau, S. S., & Chen, W. C. (2002). Density effect of binary mixtures on the segregation process in a vertical shaker. Advanced Powder Technology, 13(3), 301–315. https://doi.org/10.1163/156855202320252462
    Hsiau, S. S., Liao, C. C., Sheng, P. Y., & Tai, S. C. (2011). Experimental study on the influence of bed height on convection cell formation. Experiments in Fluids, 51(3), 795–800. https://doi.org/10.1007/s00348-011-1099-x
    Huerta, D. A., & Ruiz-Suárez, J. C. (2004). Vibration-Induced Granular Segregation: A Phenomenon Driven by Three Mechanisms. Physical Review Letters, 92(11), 1–4. https://doi.org/10.1103/PhysRevLett.92.114301
    Huerta, D. A., Sosa, V., Vargas, M. C., & Ruiz-Suárez, J. C. (2005). Archimedes’ principle in fluidized granular systems. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72(3). https://doi.org/10.1103/PhysRevE.72.031307
    Idler, V., Sánchez, I., Paredes, R., Gutiérrez, G., Reyes, L. I., & Botet, R. (2009). Three-dimensional simulations of a vertically vibrated granular bed including interstitial air. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 79(5), 1–9. https://doi.org/10.1103/PhysRevE.79.051301
    Idler, Vladimir, Śanchez, I., Paredes, R., & Botet, R. (2012). Reverse buoyancy in a vibrated granular bed: Computer simulations. European Physical Journal E, 35(10). https://doi.org/10.1140/epje/i2012-12106-x
    Jaeger, H. M., Nagel, S. R., & Behringer, R. P. (1996). Granular solids, liquids, and gases. Reviews of Modern Physics, 68(4), 1259–1273. https://doi.org/10.1103/RevModPhys.68.1259
    Liao, C. C., Hunt, M. L., Hsiau, S. S., & Lu, S. H. (2014). Investigation of the effect of a bumpy base on granular segregation and transport properties under vertical vibration. Physics of Fluids, 26(7). https://doi.org/10.1063/1.4890363
    Liao, Chun Chung. (2016). Multisized immersed granular materials and bumpy base on the Brazil nut effect in a three-dimensional vertically vibrating granular bed. Powder Technology, 288, 151–156. https://doi.org/10.1016/j.powtec.2015.10.054
    Liao, Chun Chung, & Hsiau, S. S. (2009). Influence of interstitial fluid viscosity on transport phenomenon in sheared granular materials. AIP Conference Proceedings, 1145(July 2009), 1023–1026. https://doi.org/10.1063/1.3179817
    Liao, Chun Chung, & Hsiau, S. S. (2016). Transport properties and segregation phenomena in vibrating granular beds. KONA Powder and Particle Journal, 2016(33), 109–126. https://doi.org/10.14356/kona.2016020
    Liao, Chun Chung, Hsiau, S. S., & Wu, C. S. (2012). Experimental study on the effect of surface roughness of the intruder on the Brazil nut problem in a vertically vibrated bed. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 86(6), 1–8. https://doi.org/10.1103/PhysRevE.86.061316
    Liao, Chun Chung, Hsiau, S. S., & Wu, C. S. (2014). Combined effects of internal friction and bed height on the Brazil-nut problem in a shaker. Powder Technology, 253, 561–567. https://doi.org/10.1016/j.powtec.2013.12.031
    Liffman, K., Muniandy, K., Rhodes, M., Gutteridge, D., & Metcalfe, G. (2001). A segregation mechanism in a vertically shaken bed. Granular Matter, 3(4), 205–214. https://doi.org/10.1007/s100350100093
    Liu, C. P., Bai, S., & Wang, L. (2019). Resistance forces on an intruder penetrating partially fluidized granular media. Physical Review E, 99(1), 1–7. https://doi.org/10.1103/PhysRevE.99.012903
    Liu, C., Zhang, F., Wang, L., & Zhan, S. (2013). An investigation of forces on intruder in a granular material under vertical vibration. Powder Technology, 247, 14–18. https://doi.org/10.1016/j.powtec.2013.05.025
    Liu, Y., & Zhao, J. H. (2015). A model for the Brazil-nut segregation time. Granular Matter, 17(2), 265–270. https://doi.org/10.1007/s10035-015-0548-2
    Ludewig, F., & Vandewalle, N. (2005). Reversing the Brazil Nut Effect. European Physical Journal E, 18(4), 367–372. https://doi.org/10.1140/epje/e2005-00052-7
    Ma, H. P., Lv, Y. J., Zheng, N., Li, L. S., & Shi, Q. F. (2014). Intruder motion in two-dimensional shaken granular beds. Chinese Physics Letters, 31(11). https://doi.org/10.1088/0256-307X/31/11/114501
    Matthias E. Möbius, B. E., Lauderdale, S. R. N., & Jaeger, H. M. (2001). Brazil-nut effect Size separation of granular particles. Nature Journal, 414(2), 270. Retrieved from www.nature.com
    McLaren, C. P., Kovar, T. M., Penn, A., Müller, C. R., & Boyce, C. M. (2019). Gravitational instabilities in binary granular materials. Proceedings of the National Academy of Sciences of the United States of America, 116(19), 9263–9268. https://doi.org/10.1073/pnas.1820820116
    Möbius, M. E., Cheng, X., Eshuis, P., Karczmar, G. S., Nagel, S. R., & Jaeger, H. M. (2005). Effect of air on granular size separation in a vibrated granular bed. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 72(1), 1–13. https://doi.org/10.1103/PhysRevE.72.011304
    Mora, T., Deny, S., & Marre2, O. (2015). PHYSICAL REVIEW LETTERS week ending. Prl, 114, 78105. https://doi.org/10.1103/PhysRevLett.l
    Nahmad-Molinari, Y., Canul-Chay, G., & Ruiz-Suárez, J. C. (2003). Inertia in the Brazil nut problem. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 68(4), 1–6. https://doi.org/10.1103/PhysRevE.68.041301
    Natarajan, V. V. R., Hunt, M. L., & Taylor, E. D. (1995). Local measurements of velocity fluctuations and diffusion coefficients for a granular material flow. Journal of Fluid Mechanics, 304, 1–25. https://doi.org/10.1017/S0022112095004320
    Naylor, M. A., Swift, M. R., & King, P. J. (2003). Air-driven Brazil nut effect. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 68(1), 4. https://doi.org/10.1103/PhysRevE.68.012301
    Rhodes, M., Takeuchi, S., Liffman, K., & Muniandy, K. (2003). The role of interstitial gas in the Brazil Nut effect. Granular Matter, 5(3), 107–114. https://doi.org/10.1007/s10035-003-0140-z
    Rosato, A. D., Zuo, L., Blackmore, D., Wu, H., Horntrop, D. J., Parker, D. J., & Windows-Yule, C. (2016). Tapped granular column dynamics: simulations, experiments and modeling. Computational Particle Mechanics, 3(3), 333–348. https://doi.org/10.1007/s40571-015-0075-2
    Sánchez, I., Gutiérrez, G., Zuriguel, I., & Maza, D. (2010). Sinking of light intruders in a shaken granular bed. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 81(6), 1–4. https://doi.org/10.1103/PhysRevE.81.062301
    Sandali, Y., Chand, R., & Shi, Q. (2016). Buoyancy in granular medium: How deep can an object sink in sand? Physica A: Statistical Mechanics and Its Applications, 451, 560–564. https://doi.org/10.1016/j.physa.2016.02.004
    Sanders, D. A., Swift, M. R., Bowley, R. M., & King, P. J. (2006). The attraction of Brazil nuts. Europhysics Letters, 73(3), 349–355. https://doi.org/10.1209/epl/i2005-10415-5
    Shinbrot, T., & Muzzio, F. J. (1998). Reverse Buoyancy in Shaken Granular Beds. Physical Review Letters, 81(20), 4365–4368. https://doi.org/10.1103/PhysRevLett.81.4365
    Tai, C. H., Hsiau, S. S., & Kruelle, C. A. (2010). Density segregation in a vertically vibrated granular bed. Powder Technology, 204(2–3), 255–262. https://doi.org/10.1016/j.powtec.2010.08.010
    Tai, S. C., & Hsiau, S. S. (2009a). Movement mechanisms of solid-like and liquid-like motion states in a vibrating granular bed. Powder Technology, 194(3), 159–165. https://doi.org/10.1016/j.powtec.2009.04.001
    Tai, S. C., & Hsiau, S. S. (2009b). The flow regime during the crystallization state and convection state on a vibrating granular bed. Advanced Powder Technology, 20(4), 335–349. https://doi.org/10.1016/j.apt.2009.01.003
    Then, H. Z., Sekiguchi, T., & Okumura, K. (2020). Rising obstacle in a one-layer granular bed induced by continuous vibrations: Two dynamical regimes governed by vibration velocity. Soft Matter, 16(37), 8612–8617. https://doi.org/10.1039/d0sm01021a
    Trujillo, L., & Herrmann, H. J. (2003). A note on the upward and downward intruder segregation in granular media. Granular Matter, 5(2), 85–89. https://doi.org/10.1007/s10035-003-0128-8
    Umehara, M., & Okumura, K. (2020). Rising Obstacle in a Two-dimensional Granular Bed Induced by Continuous and Discontinuous Vibrations: Dynamics Governed by Vibration Velocity. Journal of the Physical Society of Japan, 89(3), 035001. https://doi.org/10.7566/jpsj.89.035001
    Windows-Yule, C. R. K. (2016). Convection and segregation in fluidised granular systems exposed to two-dimensional vibration. New Journal of Physics, 18(3), 33005. https://doi.org/10.1088/1367-2630/18/3/033005
    Windows-Yule, C. R. K., & Parker, D. J. (2014). Center of mass scaling in three-dimensional binary granular systems. Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, 89(6), 1–8. https://doi.org/10.1103/PhysRevE.89.062206
    Windows-Yule, C. R. K., Weinhart, T., Parker, D. J., & Thornton, A. R. (2014). Effects of packing density on the segregative behaviors of granular systems. Physical Review Letters, 112(9), 1–5. https://doi.org/10.1103/PhysRevLett.112.098001
    Yan, X., Shi, Q., Hou, M., Lu, K., & Chan, C. K. (2003). Effects of Air on the Segregation of Particles in a Shaken Granular Bed. Physical Review Letters, 91(1), 2–5. https://doi.org/10.1103/PhysRevLett.91.014302
    Zamankhan, P. (2013). Sinking and recirculation of large intruders in vertically vibrated granular beds. Advanced Powder Technology, 24(6), 1070–1085. https://doi.org/10.1016/j.apt.2013.03.010
    Zhang, F., Wang, L., Liu, C., Wu, P., & Zhan, S. (2014). Patterns of convective flow in a vertically vibrated granular bed. Physics Letters, Section A: General, Atomic and Solid State Physics, 378(18–19), 1303–1308. https://doi.org/10.1016/j.physleta.2014.03.001

    QR CODE
    :::