| 研究生: |
何睿哲 Jui-Che Ho |
|---|---|
| 論文名稱: |
吸收達近紅外光釕錯合物染料的合成並應用於染料敏化太陽能電池 |
| 指導教授: |
吳春桂
Chun-Geuy Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 151 |
| 中文關鍵詞: | 三重態吸收 、紅外光吸收 、釕錯合物染料 、染料敏化太陽能電池 |
| 相關次數: | 點閱:8 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
染料敏化太陽能電池(Dye sensitized solar cells, 簡稱DSCs)大部分所使用的釕金屬染料其吸收波段大部份在可見光區,若是能增加染料在近紅外光區波段的吸收就能有更多的光子被利用,提高元件光電轉換效率。本研究將具有重原子效應的磷作為輔助配位基的配位原子以增加染料在近紅外光區的吸收。我們以羧酸三芽聯吡啶作為固著配位基,輔助配位基則有Triphenylphosphine、triethylphosphite、triphenylphosphite、2-Diphenylphosphine-5-hexylthiophene、2-Diphenylphosphine-5-hexylthieno[3,2-b]thiophene、4-Diphenylphosphine-triphenylamine等6個、合成出PPh、POEt 、POPh、PTR、PTTR及PTPA六個染料。染料的吸收波段皆涵蓋紫外光區至近紅外光區,起始吸收波長皆約為850 nm,染料的Highest occupied molecular orbital (HOMO) 能階皆坐落於0.88 V至0.71 V與碘電解質的氧化還原電位(0.4 V)還有至少0.3 V的差距,因此再以含有強推電子能力的矽(如1,2-Bis(dimethylsilyl)benzene及Triethylsilane)作為輔助配位基,矽為配位點可以提高染料的HOMO能階,然而在嘗試各種反應條件後含矽之化合物無法與釕金屬進行鍵結,推測可能是矽為sp3的混成軌域其上的烷基會與固著配位基產生空間立體障礙所導致。6個染料中以POEt所敏化之元件有最高的光電轉換效率為6.38%。
Most of the dye molecules used in Dye sensitized solar cells (DSCs) absorb only visible light. One of the strategy to enhance the photovoltaic performance of the DSCs is to red-shift the absorption of the sensitizer. In this study we used the ancillary ligand containing phosphorus, which has heavy atom effect, to enhance the absorption of the dye in near-infrared region. Six ruthenium complexes (PPh、POEt、POPh、PTR、PTTR, and PTPA) using [2,2':6',2''-terpyridine]-4,4',4''-tricarboxylic acid as the anchoring ligand and Triphenylphosphine、triethylphosphite、triphenylphosphite、2-Diphenylphosphine-5-hexylthiophene、2-Diphenylphosphine-5-hexylthieno[3,2-b]thiophene as am ancillary ligand. The onset absorption of the six dyes is all longer than 850 nm. The HOMO (highest occupied molecular orbital) level at 0.88 V ~ 0.71 V, can be reduced by iodine redox couple when oxidized. The highest power conversion efficiency of 6.38% was achieved by POEt dye. The HOMO of the six dyes are much lower than the redox potential of the iodine electroiyte. Therefore silicon containing ligands, such as 1,2-Bis(dimethylsilyl)benzene and Triethylsilane were used to replace phorphine ligand to rise the HOMO of the dye molecule. Unfortunately, maybe due to the steric effect, we are not able to use silicon as a coordination site to the ruthenium metal center.
(1) Potočnik, J. Renewable Energy Sources and the Realities of Setting an Energy Agenda. Science, 2007, 315, 810-811.
(2) 土屋健. 量子科學子雜誌. Newton 2009, 26.
(3) Chapin, D. M.; Fuller, C. S.; Pearson, G. L. A new silicon p‐n junction photocell for converting solar radiation into electrical power. Journal of Applied Physics. 1954, 25 (5), 676-677.
(4) Yoshikawa, K.; Kawasaki, H.; Yoshida, W.; Irie, T.; Konishi, K.; Nakano, K.; Uto, T.; Adachi, D.; Kanematsu, M.; Uzu, H. Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nature Energy, 2017, 2 (5), 1-8.
(5) M. Green, E. D. D., J. H. Ebinger, M. Yoshita, N. Kopidakis, X. Hao. Solar cell efficiency tables (version 59). Progress in Photovoltaics: Research and Applications, 2022, 30, 3-12.
(6) https://www.nrel.gov/pv/cell-efficiency.html,. 2022.
(7) Nazeeruddin, M. K.; Grätzel, M. Transition metal complexes for photovoltaic and light emitting applications. Photofunctional Transition Metal Complexes 2007, 113-175.
(8) Grätzel, M. Photoelectrochemical cells. In Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group, World Scientific, 2011; pp 26-32.
(9) Park, N.-G.; Van de Lagemaat, J.; Frank; AJ. Comparison of dye-sensitized rutile-and anatase-based TiO2 solar cells. The Journal of Physical Chemistry B 2000, 104 (38), 8989-8994.
(10) Papageorgiou, N.; Maier, W.; Grätzel, M. An iodine/triiodide reduction electrocatalyst for aqueous and organic media. Journal of the electrochemical Society 1997, 144 (3), 876.
(11) Grätzel, M. Dye-sensitized solar cells. Journal of photochemistry and photobiology C: Photochemistry Reviews 2003, 4 (2), 145-153.
(12) Onicha, A. C.; Castellano, F. N. Electrolyte-dependent photovoltaic responses in dye-sensitized solar cells based on an osmium (II) dye of mixed denticity. The Journal of Physical Chemistry C 2010, 114 (14), 6831-6840.
(13) Bisquert, J.; Grätzel, M.; Wang, Q.; Fabregat-Santiago, F. Three-channel transmission line impedance model for mesoscopic oxide electrodes functionalized with a conductive coating. The Journal of Physical Chemistry B 2006, 110 (23), 11284-11290.
(14) Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chemical reviews 2010, 110 (11), 6595-6663.
(15) 翁敏航. 太陽能電池-原理、元件、材料、製程與檢測技術. 東華出版 2010.
(16) Reynal, A.; Palomares, E. Ruthenium polypyridyl sensitisers in dye solar cells based on mesoporous TiO2. European Journal of Inorganic Chemistry 2011, (29), 4509-4526.
(17) Mazzio, K. A.; Luscombe, C. K. The future of organic photovoltaics. Chemical Society Reviews 2015, 44 (1), 78-90.
(18) https://www.electrical4u.com/characteristics-and-parameters-of-a-solar-cell/. 2020.
(19) Saito, M.; Fujihara, S. Large photocurrent generation in dye-sensitized ZnO solar cells. Energy & Environmental Science 2008, 1 (2), 280-283.
(20) Kalyanasundaram, K.; Grätzel, M. Applications of functionalized transition metal complexes in photonic and optoelectronic devices. Coordination chemistry reviews 1998, 177 (1), 347-414.
(21) Hamann, T. W.; Jensen, R. A.; Martinson, A. B.; Van Ryswyk, H.; Hupp, J. T. Advancing beyond current generation dye-sensitized solar cells. Energy & Environmental Science 2008, 1 (1), 66-78.
(22) Anderson, N. A.; Lian, T. Ultrafast electron injection from metal polypyridyl complexes to metal-oxide nanocrystalline thin films. Coordination Chemistry Reviews 2004, 248 (13-14), 1231-1246.
(23) Y. L. Tung, Y. S. W., M. D. Lu. The applications and future of dye-sensitized solar cell in internet of things. 工業材料雜誌 2015, 345, 138-145.
(24) Tsubomura, H.; Matsumura, M.; Nomura, Y.; Amamiya, T. Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell. Nature 1976, 261 (5559), 402-403.
(25) Chen, C.-Y.; Wang, M.; Li, J.-Y.; Pootrakulchote, N.; Alibabaei, L.; Ngoc-le, C.-h.; Decoppet, J.-D.; Tsai, J.-H.; Grätzel, C.; Wu, C.-G. Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells. ACS nano 2009, 3 (10), 3103-3109.
(26) Mathew, S.; Yella, A.; Gao, P.; Humphry-Baker, R.; Curchod, B. F.; Ashari-Astani, N.; Tavernelli, I.; Rothlisberger, U.; Nazeeruddin, M.; Grätzel, M. Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers. Nature chemistry 2014, 6 (3), 242-247.
(27) Kakiage, K.; Aoyama, Y.; Yano, T.; Oya, K.; Fujisawa, J.-i.; Hanaya, M. Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes. Chemical communications 2015, 51 (88), 15894-15897.
(28) Yun, S.; Lund, P. D.; Hinsch, A. Stability assessment of alternative platinum free counter electrodes for dye-sensitized solar cells. Energy & Environmental Science 2015, 8 (12), 3495-3514.
(29) Robertson, N. Optimizing dyes for dye‐sensitized Solar Cells. Angewandte Chemie International Edition 2006, 45 (15), 2338-2345.
(30) Ardo, S.; Meyer, G. J. Photodriven heterogeneous charge transfer with transition-metal compounds anchored to TiO 2 semiconductor surfaces. Chemical Society Reviews 2009, 38 (1), 115-164.
(31) Péchy, P.; Rotzinger, F. P.; Nazeeruddin, M. K.; Kohle, O.; Zakeeruddin, S. M.; Humphry-Baker, R.; Grätzel, M. Preparation of phosphonated polypyridyl ligands to anchor transition-metal complexes on oxide surfaces: application for the conversion of light to electricity with nanocrystalline TiO 2 films. Journal of the Chemical Society, Chemical Communications 1995, (1), 65-66.
(32) Thomas, A. G.; Syres, K. L. Adsorption of organic molecules on rutile TiO 2 and anatase TiO 2 single crystal surfaces. Chemical Society Reviews 2012, 41 (11), 4207-4217.
(33) Listorti, A.; O’regan, B.; Durrant, J. R. Electron transfer dynamics in dye-sensitized solar cells. Chemistry of Materials 2011, 23 (15), 3381-3399.
(34) Vlachopoulos, N.; Liska, P.; Augustynski, J.; Graetzel, M. Very efficient visible light energy harvesting and conversion by spectral sensitization of high surface area polycrystalline titanium dioxide films. Journal of the American Chemical Society 1988, 110 (4), 1216-1220.
(35) Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humphry-Baker, R.; Müller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. Conversion of light to electricity by cis-X2bis (2, 2'-bipyridyl-4, 4'-dicarboxylate) ruthenium (II) charge-transfer sensitizers (X= Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes. Journal of the American Chemical Society 1993, 115 (14), 6382-6390.
(36) Nazeeruddin, M. K.; Zakeeruddin, S.; Humphry-Baker, R.; Jirousek, M.; Liska, P.; Vlachopoulos, N.; Shklover, V.; Fischer, C.-H.; Grätzel, M. Acid− Base equilibria of (2, 2 ‘-Bipyridyl-4, 4 ‘-dicarboxylic acid) ruthenium (II) complexes and the effect of protonation on charge-transfer sensitization of nanocrystalline titania. Inorganic Chemistry 1999, 38 (26), 6298-6305.
(37) Nazeeruddin, M. K.; De Angelis, F.; Fantacci, S.; Selloni, A.; Viscardi, G.; Liska, P.; Ito, S.; Takeru, B.; Grätzel, M. Combined experimental and DFT-TDDFT computational study of photoelectrochemical cell ruthenium sensitizers. Journal of the American Chemical Society 2005, 127 (48), 16835-16847.
(38) Nazeeruddin, M. K.; Humphry-Baker, R.; Liska, P.; Grätzel, M. Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell. The Journal of Physical Chemistry B 2003, 107 (34), 8981-8987.
(39) Kusama, H.; Sugihara, H.; Sayama, K. Effect of cations on the interactions of Ru dye and iodides in dye-sensitized solar cells: a density functional theory study. The Journal of Physical Chemistry C 2011, 115 (5), 2544-2552.
(40) Wen, P.; Han, Y.; Zhao, W. Influence of TiO2 nanocrystals fabricating dye-sensitized solar cell on the absorption spectra of N719 sensitizer. International Journal of Photoenergy 2012, 2012.
(41) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V. Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells. Journal of the American Chemical Society 2001, 123 (8), 1613-1624.
(42) Ahn, J.; Lee, K. C.; Kim, D.; Lee, C.; Lee, S.; Cho, D. W.; Kyung, S.; Im, C. Synthesis of novel ruthenium dyes with thiophene or thienothiophene substituted terpyridyl ligands and their characterization. Molecular Crystals and Liquid Crystals 2013, 581 (1), 45-51.
(43) Zedler, L.; Theil, F.; Csáki, A.; Fritzsche, W.; Rau, S.; Schmitt, M.; Popp, J.; Dietzek, B. Ruthenium dye functionalized gold nanoparticles and their spectral responses. RSC advances 2012, 2 (10), 4463-4471.
(44) Yum, J.-H.; Baranoff, E.; Wenger, S.; Nazeeruddin, M. K.; Grätzel, M. Panchromatic engineering for dye-sensitized solar cells. Energy & Environmental Science 2011, 4 (3), 842-857.
(45) Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yang, X.; Yanagida, M. High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energy & Environmental Science 2012, 5 (3), 6057-6060.
(46) Ozawa, H.; Shimizu, R.; Arakawa, H. Significant improvement in the conversion efficiency of black-dye-based dye-sensitized solar cells by cosensitization with organic dye. RSC advances 2012, 2 (8), 3198-3200.
(47) Ozawa, H.; Okuyama, Y.; Arakawa, H. Dependence of the Efficiency Improvement of Black‐Dye‐Based Dye‐Sensitized Solar Cells on Alkyl Chain Length of Quaternary Ammonium Cations in Electrolyte Solutions. ChemPhysChem 2014, 15 (6), 1201-1206.
(48) Bomben, P. G.; Robson, K. C.; Koivisto, B. D.; Berlinguette, C. P. Cyclometalated ruthenium chromophores for the dye-sensitized solar cell. Coordination Chemistry Reviews 2012, 256 (15-16), 1438-1450.
(49) Hussain, M.; Islam, A.; Bedja, I.; Gupta, R. K.; Han, L.; El-Shafei, A. A comparative study of Ru (II) cyclometallated complexes versus thiocyanated heteroleptic complexes: thermodynamic force for efficient dye regeneration in dye-sensitized solar cells and how low could it be? Physical Chemistry Chemical Physics 2014, 16 (28), 14874-14881.
(50) Funaki, T.; Yanagida, M.; Onozawa-Komatsuzaki, N.; Kasuga, K.; Kawanishi, Y.; Kurashige, M.; Sayama, K.; Sugihara, H. Synthesis of a new class of cyclometallated ruthenium (II) complexes and their application in dye-sensitized solar cells. Inorganic Chemistry Communications 2009, 12 (9), 842-845.
(51) Benedek, Z.; Szilvási, T. Can low-valent silicon compounds be better transition metal ligands than phosphines and NHCs? RSC Advances 2015, 5 (7), 5077-5086.
(52) Kinoshita, T.; Dy, J. T.; Uchida, S.; Kubo, T.; Segawa, H. Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nature Photonics 2013, 7 (7), 535-539.
(53) McGlynn, S.; Sunseri, R.; Christodouleas, N. External Heavy‐Atom Spin‐Orbital Coupling Effect. I. The Nature of the Interaction. The Journal of Chemical Physics 1962, 37 (8), 1818-1824.
(54) De Angelis, F.; Fantacci, S.; Selloni, A.; Nazeeruddin, M. K.; Grätzel, M. First-principles modeling of the adsorption geometry and electronic structure of Ru (II) dyes on extended TiO2 substrates for dye-sensitized solar cell applications. The Journal of Physical Chemistry C 2010, 114 (13), 6054-6061.
(55) Kinoshita, T.; Otsubo, M.; Ono, T.; Segawa, H. Enhancement of Near-Infrared Singlet–Triplet Absorption of Ru (II) Sensitizers for Improving Conversion Efficiency of Solar Cells. ACS Applied Energy Materials 2021, 4 (7), 7052-7063.
(56) S. Koitsu, T. Y., K. Katsumi. Photoelectric converters, metal complex dyes, dye-adsorption liquid composition for dye-sensitized solar cells, and fabrication of converters and solar cells. Japan 2013.
(57) Husson, J.; Dehaudt, J.; Guyard, L. Preparation of carboxylate derivatives of terpyridine via the furan pathway. Nature Protocols 2014, 9 (1), 21-26.
(58) Abdelbagi, M. E.; Milius, W.; Mondal, S.; van Smaalen, S.; Alt, H. G. 1, 2-Bis (dimethylsilyl) phenylidene bridged zirconocene and hafnocene dichloride complexes as precatalysts for ethylene polymerization. Journal of Organometallic Chemistry 2018, 854, 76-86.
(59) Jagarapu, R.; Maddala, S.; Mahto, I.; Venkatakrishnan, P. Behaviour of Regioisomeric Bithiophenes in the Oxidative Synthesis of Tetrathieno‐Fused π‐Expanded Fluorenes and Their Characterization. Asian Journal of Organic Chemistry 2020, 9 (12), 2144-2152.
(60) Perruchas, S.; Flores, S.; Jousselme, B.; Lobkovsky, E.; Abruña, H.; DiSalvo, F. J. [W6S8] octahedral tungsten clusters functionalized with thiophene derivatives: toward polymerizable building blocks. Inorganic chemistry 2007, 46 (21), 8976-8987.
(61) Liau, W.-L.; Su, Y.-J.; Tseng, H.-F.; Chen, J.-T.; Hsu, C.-S. Synthesis and characterisation of liquid crystal molecules based on thieno [3, 2-b] thiophene and their application in organic field-effect transistors. Liquid Crystals 2017, 44 (3), 557-565.
(62) Arakawa, Y.; Kang, S.; Nakajima, S.; Sakajiri, K.; Kawauchi, S.; Watanabe, J.; Konishi, G.-i. Synthesis of new wide nematic diaryl-diacetylenes containing thiophene-based heteromonocyclic and heterobicyclic structures, and their birefringence properties. Liquid Crystals 2014, 41 (5), 642-651.
(63) Nad, S.; Malik, S. Design, synthesis, and electrochromic behaviors of donor‐acceptor‐donor type triphenylamine‐iso‐naphthalenediimide derivatives. ChemElectroChem 2020, 7 (19), 4144-4152.
(64) Xu, H.; Yin, K.; Huang, W. Highly Improved Electroluminescence from a Series of Novel EuIII Complexes with Functional Single‐Coordinate Phosphine Oxide Ligands: Tuning the Intramolecular Energy Transfer, Morphology, and Carrier Injection Ability of the Complexes. Chemistry–A European Journal 2007, 13 (36), 10281-10293.
(65) Lin, L.-Y.; Tsai, C.-H.; Wong, K.-T.; Huang, T.-W.; Hsieh, L.; Liu, S.-H.; Lin, H.-W.; Wu, C.-C.; Chou, S.-H.; Chen, S.-H. Organic dyes containing coplanar diphenyl-substituted dithienosilole core for efficient dye-sensitized solar cells. The Journal of Organic Chemistry 2010, 75 (14), 4778-4785.
(66) Zhu, W.; Wu, Y.; Wang, S.; Li, W.; Li, X.; Chen, J.; Wang, Z. s.; Tian, H. Organic D‐A‐π‐A solar cell sensitizers with improved stability and spectral response. Advanced Functional Materials 2011, 21 (4), 756-763.
(67) Nguyen, T.-D.; Lan, Y.-P.; Wu, C.-G. High-efficiency cycloruthenated sensitizers for dye-sensitized solar cells. Inorganic chemistry 2018, 57 (3), 1527-1534.
(68) Komuro, T.; Tobita, H. Thermal reaction of a ruthenium bis (silyl) complex having a lutidine-based Si, N, Si ligand: formation of a μ-silyl (μ-silylene) diruthenium complex involving a 3c–2e Ru–Si–C interaction. Chemical communications 2010, 46 (7), 1136-1137.