跳到主要內容

簡易檢索 / 詳目顯示

研究生: 李暐凡
Wei-Fan Lee
論文名稱: 自組裝單分子薄膜重排現象及聚合行為之研究
The Study of Reorganization of Self-Assembled Monolayers and Topochemical Photopolymerization
指導教授: 陶雨台
Yu-Tai Tao
吳春桂
Chun-Guey Wu
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 化學學系
Department of Chemistry
畢業學年度: 93
語文別: 中文
論文頁數: 113
中文關鍵詞: 重排現象聚雙炔基化合物自組裝單分子薄膜
外文關鍵詞: self-assembled monolayers, SAMs, topochemical polymerization
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇研究主要分為兩個部分,第一個部分為有機酸分子在銀表面的重組現象研究,而第二部分為雙炔基有機酸化合物(diacetylenic acid)在不同金屬表面的topochemical聚合反應的研究。第一部分的研究利用反射式紅外線光譜儀(reflection-absorption Infrared spectrometer)證實了有機酸分子在銀表面所形成的自組裝薄膜(以CO2-/Ag離子鍵模式鍵結)在通入硫化氫氣體、乙基硫醇或十二烷基硫醇蒸氣後,皆會誘發有機酸分子的重組排列,使有機酸分子由原本站立於表面鍵結的型態轉變為以彼此間形成氫鍵的模式平躺於表面的堆疊,且此一現象為一個可逆的過程。從研究結果顯示,當有機酸分子中具有苯環(π-π作用力)或飽和長碳鏈(凡得瓦力)時,因為分子間作用力的影響,會造成所堆疊成的粒子大小不同,這可由原子力顯微鏡(atomic force microscopy)證實,此外,在溫度較高的環境下,由於分子的移動性增加,可以在金屬的表面得到較大粒子的堆疊。第二部分的研究主要利用反射式紅外線光譜儀及拉曼光譜儀(Raman spectrometer)探討雙炔基有機酸化合物在銀和銅表面的topochemical照光聚合行為,而從結果顯示,雙炔基有機酸化合物在銀和銅的表面由於排列型態不同,造成分子彼此間距離的差異,使得照光聚合的行為偏好發生在銀表面的排列模式。此外於不同碳數的雙炔基有機酸化合物在銀表面的研究上,可以知道分子間排列不存在著奇偶效應,而是由雙炔基到金屬表面的距離及碳鏈間的凡得瓦力所決定。


    This study can be divided into two parts. One is about self-assembled monolayers (SAMs) of carboxylic acids adsorbed on a silver surface undergoing a reversible reorganization to form discrete clusters of hydrogen-bonded free acids upon exposing the monolayer assembly to H2S,ethanethiol,dodecanethiol vapor. The other is about SAMs of diacetylenic acids adsorbed on copper and silver surface to investigate the process of topochemical photopolymerization by exposing them to UV light.
    In the first part of our research, RAIR(reflection-absorption IR) was used to observe the reorganization of carboxylic acid SAMs on the surface of silver. Indeed we got the evidences that when the sample was exposed to hydrogen sulfide, ethanethiol or dodecanethiol vapor, the protonation of the carboxylate headgroup of SAMs occurred and resulted in free acid molecules transformed from monolayer turning into clusters by H-bonded dimer of acid. From these results we observed that the effects of π-π stacking and van der Waals force led the aggregation of clusters and the atomic force microscopy was used to suggest this situation. In addition, we found that when raising the temperature we can got larger clusters. In the second part of our research, RAIR and Raman spectroscopy were used to prove the topochemical polymerizations of diacetylenic acids on copper and silver surface. Owing to the different binding geometries of diacetylenic acids on copper and silver surface, they led to the distance variation between adjacent molecules, and the topochemical polymerization prefered proceeding on Ag. Besides, clear odd-even effect was not observed among different number of carbon chains, and the packing of molecules in the monolayer was determined by the distance from diacetylene fragment to metal surface and the van der Waals force among the neighboring carbon chain.

    壹、緒論 1 1-1前言 1 1-2有機單分子薄膜 2 1-2.1 LB薄膜(Langmuir-Blodgett film) 2 1-2.2自組裝單分子薄膜(Self-assembled monolayer) 5 1-3自組裝薄膜種類 7 1-3.1 脂肪酸(Fatty acid) 8 1-3.2 烷基矽烷(alkylsilane) 9 1-3.3 烷基硫醇(alkylthiol) 10 1-4 聚雙炔基(polydiacetylene)化合物之簡介 12 貳、研究動機與方法 16 參、實驗部分 18 3-1 藥品 18 3-1.1 合成用藥品 18 3-1.1.1 有機薄膜所用藥品 18 3-1.2 清洗矽晶片所用藥品 19 3-1.3 基質來源 19 3-1.4 儀器 19 3-2 材料合成 20 3-2.1 汞錯合物之合成 20 3-2.2 1-溴-1-十六炔之合成 21 3-2.3 2,4-雙炔基十九烷基酸之合成 21 3-2.4 3,5-雙炔基-1-羥基二十烷 23 3-2.5 3,5-雙炔基二十烷酸之合成 23 3-2.6 氧化鐵奈米粒子的合成 24 3-3 有機薄膜的製備 24 3-3.1 矽晶片的清洗 24 3-3.2 將金屬蒸鍍於矽晶片上 25 3-3.3 有機單層膜的製備 25 3-4 硫化氫及硫醇氣體的曝曬處理 25 3-5 在不同溫度下通入硫化氫氣體及乙基硫醇蒸氣 26 3-6 雙炔基有機酸在銀表面的自組裝單分子薄膜製備及照光反應 26 3-7 雙炔基化合物在石英玻璃上的自組裝單分子薄膜的製備 27 3-8 聚雙炔基化合物在氧化鐵奈米粒子的修飾 27 3-9薄膜性質的測量 27 3-9.1 反射式傅式紅外光線光譜儀(reflection-absorption Fourier transform Infrared Spectrometer) 27 3-9.2 原子力顯微鏡(Atomic Force Microscopy) 29 3-9.3 顯微拉曼光譜分析儀(Micro-Raman Spectrumeter) 30 肆、結果與討論 33 4-1不同酸在銀表面的自組裝薄膜 33 4-2 不同酸在銀表面的自組裝薄膜經硫化氫的曝曬 35 4-3 不同酸在銀表面自組裝薄膜經曝曬不同硫醇蒸氣後重組現象 42 4-3.1 曝曬硫化氫氣體 42 4-3.2曝曬乙基硫醇蒸氣 43 4-3.3 曝曬十二烷基硫醇蒸氣 51 4-4 溫度效應對不同碳鏈的影響 59 4-4.1 曝曬硫化氫氣體 59 4-4.2 曝曬乙基硫醇蒸氣 65 4-5 雙炔基化合物在銀表面的自組裝薄膜 72 4-6 雙炔基化合物在銅表面的自組裝薄膜 77 4-7 雙炔基化合物在石英玻璃上的行為 80 4-8 氧化鐵奈米粒子與聚雙炔基化合物之奈米複合材料應用 81 伍、結論與未來展望 85 陸、文獻參考 86 柒、附圖 89

    1. Swalen, J. D., Allara, D. L., Andrade, J. D., Chandross, E. A., Caroff,
    S.,Israelachvili, J., McCarthy, T. J., Murry, R., Pease, R.F., Rabolt, J.
    F., Wynne, K. J., Yu, H, Langmuir 1987, 3, 932.
    2. Franklin, B., Phil. Trans. R. Soc. 1774, 64, 445.
    3. Pockels, A., Nature 1891, 43, 437.
    4. Rayleigh, L., Phil. Mag. 1899, 48, 321.
    5. Devaux, H., Smithsonian Institute Ann. Rep. 1913, 261.
    6. Hardy, W. B., Proc. R. Soc. A. 1912, 86, 610.
    7. Langmuir, I., J. Am. Chem. Soc. 1917, 39, 1848.
    8. Blodgett, K. A., J. Am. Chem. Soc. 1935, 57, 1007.
    9. Ulamn, A., An Introduction to Ultrathin Organic Films:From
    Langmuir-Blodgett to Self-assembly. ed.; Academic Press: Boston, 1991.
    10.Bigelow, W. C., Pickett, D. L., Zisman, W. A., Collid Interface Sci. 1946,
    1, 513.
    11. Nuzzo, R. G. A., D. L., J. Am. Chem. Soc. 1983, 105, 4481.
    12. Sagiv, J., J. Am. Chem. Soc. 1980, 102, 92.
    13. Fenter, P., Eberhardt, A., Eisenberger, P., Science 1994, 266, 1216.
    14. Delamarche, E., Michel, B., Kang, H., Gerber, C., Langmuir 1994, 10, 4103.
    15. Fenter, P., Eisenberger, P., Li, J., Camillone III, N., Bernasek, S.,
    Scoles, G., Ramnanarayanan, T. A., Liang, K. S., Langmuir 1991, 7, 2013.
    16. Dhirani, A., Hines, M. A., Fisher, A. J., Ismail, O., Guyot-Sionnest, P.,
    ibid 1995, 11, 2609.
    17. Keller, H., Sirnak, P., Schrepp, W., Dembowski, J., Thin Solid Film 1994,
    244, 799.
    18. Itoh, M., Nishihara, K., Aramaki, K., J. Electrochem. Soc. 1995, 117,
    12528.
    19. Schonherr, H., Ringsdorf, H., ibid 1996, 12, 3891.
    20. Biebuyck, H. A., Whitesides, G. M., Langmuir 1994, 10, 1825.
    21. Lee, T. R., Laibinis, P. E., Folkers, J. P., Whitesides, G. M., Pure Appl.
    Chem. 1991, 63, 821.
    22. Folkers, J. P., Gorman, C. B., Laibinis, P. E., Buchholz, S. Whitesides,
    G. M., Nuzzo, R. G., Langmuir 1995, 11, 813.
    23. Allara, D. L., Nuzzo, R.G., Langmuir 1985, 1, 54.
    24. Laibinis, P. E., Hickinan, J. J., Wrighton, M. S., Whitesides, G. M.,
    Science 1989, 245, 845.
    25. Tao, Y. T., Lee, M. T., Chang, S. C., J. Am. Chem. Soc. 1993, 115, 9547.
    26. Dubois, L. H., Zegarski, B. R., Nuzzo, R. G., J. Am. Chem. Soc. 1990, 112,
    570.
    27. Allara, D. L., Nuzzo, R.G., Langmuir 1985, 1, 45.
    28. Ogawa, H., Chihera, T., Taya, K., J. Am. Chem. Soc. 1985, 107, 1365.
    29. Schlotter, N. E., Porter, M. D., Bright, T. B., Allara, D. L., Chem. Phys.
    Lett. 1986, 132, 93.
    30. Samart, M. G., Brown, C.A., Gordon, J. G., Langmuir 1993, 9, 1082.
    31. Tao, Y. T., J. Am. Chem. Soc. 1993, 115, 4350.
    32. Ulamn, A., Chem. Rev. 1996, 96, 1533.
    33. Du, Q., Freysz, E., Shen, Y. R., Science 1994, 264, 826.
    34. Bain, C. D., J. Chem. Soc. Faraday Trans. 1995, 91, 1281.
    35. Folkers, J. P., Laibinis, P. E., Whitesides, G. M., Langmuir 1992, 8, 1330.
    36. Widrig, C., A., Alves, C. A.,Porter, M. D., J. Am. Chem. Soc. 1991, 113,
    2805.
    37. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G.
    M., Chem. Rev. 2005, 105, 1103.
    38. Wegner, G., Z. Naturforsch 1969, 24, 824.
    39. Schmidt, G. M. J., Solid state photochemistry. ed.; Verlag Chemie:
    Weinheim, 1976
    40. Takami, K., Mizuno, J., Akai-Kasaya, M., Saito, A., Aono, M., Kuwahara,
    Y., J. Phys. Chem. B 2004, 108, 16353.
    41. Nalwa, H. S., Miyata, S., ed.; CRC Press: Boca Raton,FL, 1998.
    42. Tieke, B., Wegner, G., Naegele, D., Ringsdorf, H., Angew. Chem. Int. Ed.
    Engl. 1976, 15, 764.
    43. Lieser, G., Tieke, B., Wegner, G., Thin Solid Film 1980, 68, 77.
    44. Day, D., Lando, J. B., Macromolecules 1980, 13, 1478.
    45. Mino, N., Tamura, H., Ogawa, K., Langmuir 1991, 7, 2336.
    46. Cao, G., Mallouk, T. E., J. Solid State Chem. 1991, 94, 59.
    47. Kuriyama, K., Kikuchi, H., Kajiyama, T., Langmuir 1996, 12, 2283.
    48. Batchelder, D. N., Evans, S.D., Freeman, T.L.,Haussing, L.,Ringsdorf, H.,
    Wolf, H., J. Am. Chem. Soc. 1994, 116, 1050.
    49. Singh, A., Schnur, J. M., Syn. Comm. 1986, 16, 847.
    50. Zeni, G., Panatieri, R. B., Lissner, E., Menezes, P. H., Braga, A. L.,
    Stefani, H. A., Org. Lett. 2001, 3, 819.
    51. Evans, P. A., Roseman, J. D., Garber, L. T., Syn. Comm. 1996, 26, 4685.
    52. Fu, L., Dravid, V. P., Johnson, D. L., App. Sur. Sci. 2001, 181, 173.
    53. Kim, D. K., Mikhaylova, M., Zhang, Y., Muhammed, M., Chem. Mater. 2003,
    15, 1617.
    54. Garnier, A., Yassar, R., Hajlaoui, G., Horowitz, F., Deloffre, F., Servet,
    B., Ries, S., Alnot, P., Amer. Chem. Soc. 1993, 115, 8716.
    55. Varsanyi, G., Vibrational Spectra of Benzene Derivatives. ed.; 1921
    56. Snyder, R. G., J. Molecular Spectroscopy 1960, 4, 411.
    57. Tao, Y. T., Hietpas, G. D., Allara, D. L., J. Am. Chem. Soc. 1996, 118,
    6724.
    58. Porter, M. D., Bright, T. B., Allara, D. L., Chidsey, C. E. D., J. Am.
    Chem. Soc. 1987, 109, 3559.
    59. Tao, Y. T., Huang, C. Y., Chiou, D. R., Chen, L. J., Langmuir 2002, 18,
    8400.
    60. Bloor, D., Chance, R. R., Polydiacetylenes. ed.; Martinus Nijhoff:
    Dordrecht, 1985
    61. Itoh, K., Kudryashov, I., Yamagata, J., Nishizawa, T., Fujii, M., Osaka,
    N., J. Phys. Chem. B 2005, 109, 271.
    62. Tang, J., Myers, M., Bosnick, K. A., Brus, L. E., J. Phys. Chem. B 2003,
    107, 7501.
    63. Wang, Y., Teng, X., Wang, J. S., Yang, H., Nano Lett. 2003, 3, 789.

    QR CODE
    :::