| 研究生: |
李暐凡 Wei-Fan Lee |
|---|---|
| 論文名稱: |
自組裝單分子薄膜重排現象及聚合行為之研究 The Study of Reorganization of Self-Assembled Monolayers and Topochemical Photopolymerization |
| 指導教授: |
陶雨台
Yu-Tai Tao 吳春桂 Chun-Guey Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 化學學系 Department of Chemistry |
| 畢業學年度: | 93 |
| 語文別: | 中文 |
| 論文頁數: | 113 |
| 中文關鍵詞: | 重排現象 、聚雙炔基化合物 、自組裝單分子薄膜 |
| 外文關鍵詞: | self-assembled monolayers, SAMs, topochemical polymerization |
| 相關次數: | 點閱:13 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本篇研究主要分為兩個部分,第一個部分為有機酸分子在銀表面的重組現象研究,而第二部分為雙炔基有機酸化合物(diacetylenic acid)在不同金屬表面的topochemical聚合反應的研究。第一部分的研究利用反射式紅外線光譜儀(reflection-absorption Infrared spectrometer)證實了有機酸分子在銀表面所形成的自組裝薄膜(以CO2-/Ag離子鍵模式鍵結)在通入硫化氫氣體、乙基硫醇或十二烷基硫醇蒸氣後,皆會誘發有機酸分子的重組排列,使有機酸分子由原本站立於表面鍵結的型態轉變為以彼此間形成氫鍵的模式平躺於表面的堆疊,且此一現象為一個可逆的過程。從研究結果顯示,當有機酸分子中具有苯環(π-π作用力)或飽和長碳鏈(凡得瓦力)時,因為分子間作用力的影響,會造成所堆疊成的粒子大小不同,這可由原子力顯微鏡(atomic force microscopy)證實,此外,在溫度較高的環境下,由於分子的移動性增加,可以在金屬的表面得到較大粒子的堆疊。第二部分的研究主要利用反射式紅外線光譜儀及拉曼光譜儀(Raman spectrometer)探討雙炔基有機酸化合物在銀和銅表面的topochemical照光聚合行為,而從結果顯示,雙炔基有機酸化合物在銀和銅的表面由於排列型態不同,造成分子彼此間距離的差異,使得照光聚合的行為偏好發生在銀表面的排列模式。此外於不同碳數的雙炔基有機酸化合物在銀表面的研究上,可以知道分子間排列不存在著奇偶效應,而是由雙炔基到金屬表面的距離及碳鏈間的凡得瓦力所決定。
This study can be divided into two parts. One is about self-assembled monolayers (SAMs) of carboxylic acids adsorbed on a silver surface undergoing a reversible reorganization to form discrete clusters of hydrogen-bonded free acids upon exposing the monolayer assembly to H2S,ethanethiol,dodecanethiol vapor. The other is about SAMs of diacetylenic acids adsorbed on copper and silver surface to investigate the process of topochemical photopolymerization by exposing them to UV light.
In the first part of our research, RAIR(reflection-absorption IR) was used to observe the reorganization of carboxylic acid SAMs on the surface of silver. Indeed we got the evidences that when the sample was exposed to hydrogen sulfide, ethanethiol or dodecanethiol vapor, the protonation of the carboxylate headgroup of SAMs occurred and resulted in free acid molecules transformed from monolayer turning into clusters by H-bonded dimer of acid. From these results we observed that the effects of π-π stacking and van der Waals force led the aggregation of clusters and the atomic force microscopy was used to suggest this situation. In addition, we found that when raising the temperature we can got larger clusters. In the second part of our research, RAIR and Raman spectroscopy were used to prove the topochemical polymerizations of diacetylenic acids on copper and silver surface. Owing to the different binding geometries of diacetylenic acids on copper and silver surface, they led to the distance variation between adjacent molecules, and the topochemical polymerization prefered proceeding on Ag. Besides, clear odd-even effect was not observed among different number of carbon chains, and the packing of molecules in the monolayer was determined by the distance from diacetylene fragment to metal surface and the van der Waals force among the neighboring carbon chain.
1. Swalen, J. D., Allara, D. L., Andrade, J. D., Chandross, E. A., Caroff,
S.,Israelachvili, J., McCarthy, T. J., Murry, R., Pease, R.F., Rabolt, J.
F., Wynne, K. J., Yu, H, Langmuir 1987, 3, 932.
2. Franklin, B., Phil. Trans. R. Soc. 1774, 64, 445.
3. Pockels, A., Nature 1891, 43, 437.
4. Rayleigh, L., Phil. Mag. 1899, 48, 321.
5. Devaux, H., Smithsonian Institute Ann. Rep. 1913, 261.
6. Hardy, W. B., Proc. R. Soc. A. 1912, 86, 610.
7. Langmuir, I., J. Am. Chem. Soc. 1917, 39, 1848.
8. Blodgett, K. A., J. Am. Chem. Soc. 1935, 57, 1007.
9. Ulamn, A., An Introduction to Ultrathin Organic Films:From
Langmuir-Blodgett to Self-assembly. ed.; Academic Press: Boston, 1991.
10.Bigelow, W. C., Pickett, D. L., Zisman, W. A., Collid Interface Sci. 1946,
1, 513.
11. Nuzzo, R. G. A., D. L., J. Am. Chem. Soc. 1983, 105, 4481.
12. Sagiv, J., J. Am. Chem. Soc. 1980, 102, 92.
13. Fenter, P., Eberhardt, A., Eisenberger, P., Science 1994, 266, 1216.
14. Delamarche, E., Michel, B., Kang, H., Gerber, C., Langmuir 1994, 10, 4103.
15. Fenter, P., Eisenberger, P., Li, J., Camillone III, N., Bernasek, S.,
Scoles, G., Ramnanarayanan, T. A., Liang, K. S., Langmuir 1991, 7, 2013.
16. Dhirani, A., Hines, M. A., Fisher, A. J., Ismail, O., Guyot-Sionnest, P.,
ibid 1995, 11, 2609.
17. Keller, H., Sirnak, P., Schrepp, W., Dembowski, J., Thin Solid Film 1994,
244, 799.
18. Itoh, M., Nishihara, K., Aramaki, K., J. Electrochem. Soc. 1995, 117,
12528.
19. Schonherr, H., Ringsdorf, H., ibid 1996, 12, 3891.
20. Biebuyck, H. A., Whitesides, G. M., Langmuir 1994, 10, 1825.
21. Lee, T. R., Laibinis, P. E., Folkers, J. P., Whitesides, G. M., Pure Appl.
Chem. 1991, 63, 821.
22. Folkers, J. P., Gorman, C. B., Laibinis, P. E., Buchholz, S. Whitesides,
G. M., Nuzzo, R. G., Langmuir 1995, 11, 813.
23. Allara, D. L., Nuzzo, R.G., Langmuir 1985, 1, 54.
24. Laibinis, P. E., Hickinan, J. J., Wrighton, M. S., Whitesides, G. M.,
Science 1989, 245, 845.
25. Tao, Y. T., Lee, M. T., Chang, S. C., J. Am. Chem. Soc. 1993, 115, 9547.
26. Dubois, L. H., Zegarski, B. R., Nuzzo, R. G., J. Am. Chem. Soc. 1990, 112,
570.
27. Allara, D. L., Nuzzo, R.G., Langmuir 1985, 1, 45.
28. Ogawa, H., Chihera, T., Taya, K., J. Am. Chem. Soc. 1985, 107, 1365.
29. Schlotter, N. E., Porter, M. D., Bright, T. B., Allara, D. L., Chem. Phys.
Lett. 1986, 132, 93.
30. Samart, M. G., Brown, C.A., Gordon, J. G., Langmuir 1993, 9, 1082.
31. Tao, Y. T., J. Am. Chem. Soc. 1993, 115, 4350.
32. Ulamn, A., Chem. Rev. 1996, 96, 1533.
33. Du, Q., Freysz, E., Shen, Y. R., Science 1994, 264, 826.
34. Bain, C. D., J. Chem. Soc. Faraday Trans. 1995, 91, 1281.
35. Folkers, J. P., Laibinis, P. E., Whitesides, G. M., Langmuir 1992, 8, 1330.
36. Widrig, C., A., Alves, C. A.,Porter, M. D., J. Am. Chem. Soc. 1991, 113,
2805.
37. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G., Whitesides, G.
M., Chem. Rev. 2005, 105, 1103.
38. Wegner, G., Z. Naturforsch 1969, 24, 824.
39. Schmidt, G. M. J., Solid state photochemistry. ed.; Verlag Chemie:
Weinheim, 1976
40. Takami, K., Mizuno, J., Akai-Kasaya, M., Saito, A., Aono, M., Kuwahara,
Y., J. Phys. Chem. B 2004, 108, 16353.
41. Nalwa, H. S., Miyata, S., ed.; CRC Press: Boca Raton,FL, 1998.
42. Tieke, B., Wegner, G., Naegele, D., Ringsdorf, H., Angew. Chem. Int. Ed.
Engl. 1976, 15, 764.
43. Lieser, G., Tieke, B., Wegner, G., Thin Solid Film 1980, 68, 77.
44. Day, D., Lando, J. B., Macromolecules 1980, 13, 1478.
45. Mino, N., Tamura, H., Ogawa, K., Langmuir 1991, 7, 2336.
46. Cao, G., Mallouk, T. E., J. Solid State Chem. 1991, 94, 59.
47. Kuriyama, K., Kikuchi, H., Kajiyama, T., Langmuir 1996, 12, 2283.
48. Batchelder, D. N., Evans, S.D., Freeman, T.L.,Haussing, L.,Ringsdorf, H.,
Wolf, H., J. Am. Chem. Soc. 1994, 116, 1050.
49. Singh, A., Schnur, J. M., Syn. Comm. 1986, 16, 847.
50. Zeni, G., Panatieri, R. B., Lissner, E., Menezes, P. H., Braga, A. L.,
Stefani, H. A., Org. Lett. 2001, 3, 819.
51. Evans, P. A., Roseman, J. D., Garber, L. T., Syn. Comm. 1996, 26, 4685.
52. Fu, L., Dravid, V. P., Johnson, D. L., App. Sur. Sci. 2001, 181, 173.
53. Kim, D. K., Mikhaylova, M., Zhang, Y., Muhammed, M., Chem. Mater. 2003,
15, 1617.
54. Garnier, A., Yassar, R., Hajlaoui, G., Horowitz, F., Deloffre, F., Servet,
B., Ries, S., Alnot, P., Amer. Chem. Soc. 1993, 115, 8716.
55. Varsanyi, G., Vibrational Spectra of Benzene Derivatives. ed.; 1921
56. Snyder, R. G., J. Molecular Spectroscopy 1960, 4, 411.
57. Tao, Y. T., Hietpas, G. D., Allara, D. L., J. Am. Chem. Soc. 1996, 118,
6724.
58. Porter, M. D., Bright, T. B., Allara, D. L., Chidsey, C. E. D., J. Am.
Chem. Soc. 1987, 109, 3559.
59. Tao, Y. T., Huang, C. Y., Chiou, D. R., Chen, L. J., Langmuir 2002, 18,
8400.
60. Bloor, D., Chance, R. R., Polydiacetylenes. ed.; Martinus Nijhoff:
Dordrecht, 1985
61. Itoh, K., Kudryashov, I., Yamagata, J., Nishizawa, T., Fujii, M., Osaka,
N., J. Phys. Chem. B 2005, 109, 271.
62. Tang, J., Myers, M., Bosnick, K. A., Brus, L. E., J. Phys. Chem. B 2003,
107, 7501.
63. Wang, Y., Teng, X., Wang, J. S., Yang, H., Nano Lett. 2003, 3, 789.