跳到主要內容

簡易檢索 / 詳目顯示

研究生: 梁育庭
Yu-ting Liang
論文名稱: 藉由一維結構及金銀鈀之合金化增益白金奈米材料之氧氣還原反應效能
Enhancement of Oxygen Reduction Reaction Performance of Pt Nanomaterials by 1-Dimensional Structure and Alloying of Au, Ag, and Pd
指導教授: 王冠文
Kuan-wen Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 78
中文關鍵詞: 奈米棒鉑金鉑銀鉑鈀核殼結構氧氣還原反應加速穩定度測試未填滿之d軌域數目
外文關鍵詞: nanorods, PtAu, PtAg, PtPd, core/shell structure, oxygen reduction reaction, accelerated durability test, number of unoccupied d-states
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用甲酸還原法(formic acid method, FAM)製備不同長寬比之鉑奈米棒(nanorod)及鉑金,鉑銀,鉑鈀奈米棒以應用於氧氣還原反應(oxygen reduction reaction, ORR)。對於鉑奈米材料之一維(one-dimensional)結構及合金效應對ORR之增益將在本研究中探討。所製備觸媒之結構、表面物種、表面組成、化學組成、形貌、電催化活性以及未填滿d軌域(number of unoccupied d-states, hTs)分析分別使用X光繞射儀(X-ray diffraction, XRD), 程式溫控還原儀(temperature programmed reduction, TPR),光電子能譜儀(X-ray photoelectron spectroscopy, XPS), 感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-atomic emission spectrometer, ICP-AES), 高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM), 旋轉盤電極(rotating disk electrode, RDE)以及X光吸收光譜(X-ray absorption spectroscopy, XAS)等儀器鑑定。
    研究結果分為兩部分,第一部分以FAM製備金屬負載量為45 wt%之不同長寬比的碳擔載鉑及鉑金奈米棒,其長寬比分別為1.84, 2.34, 3.75和4.00,且命名為Pt-1, Pt-2, Pt-3和PtAu。在ORR活性的表現上,Pt-3有最好之質量活性(mass activity, MA),而PtAu則由於金的表面覆蓋,其活性略遜於Pt-3;然而在經過1000圈加速穩定度測試(accelerated durability test, ADT)後,PtAu奈米棒有最佳的ORR活性及穩定度,其活性僅下降24 %。另外,從XAS計算可鑑定出PtAu奈米棒有較低之hTs,其意指有較多之電子轉移至鉑之d軌域,降低與氧鍵結,進而提升ORR活性。
    第二部分同樣使用FAM製備45 wt%之碳擔載鉑金、鉑銀、鉑鈀奈米棒,命名為PtAu, PtAg及PtPd,其具有鉑在內核,且第二金屬在外殼之核殼結構,其奈米棒長寬比約為4.0且沿著(111)方向生長。PtAu相較於其他合金觸媒有較好之ORR活性,其次為PtAg奈米棒,其活性為商用材Pt/C之1.2倍。然而在1000圈ADT後,PtAu因為鉑之表面偏析使其結構不穩定,進而劣化ORR活性與穩定性。相反的,由於PtAg奈米棒有較穩定之結構,經由ADT之後PtAg奈米棒之活性及穩定度為最佳,僅下降了9 %,歸因於銀之合金化效應。


    In this study, Pt nanorods (NRs) with different aspect ratios and Pt3M (M= Au, Ag or Pd) NRs are prepared by the formic acid method (FAM) for the oxygen reduction reaction (ORR). For Pt nanomaterials, the effect of one-dimensional (1-D) morphology and alloying on the promotion of their ORR performance has been investigated. The structures, surface species, surface compositions, chemical compositions, morphologies, electrochemical properties and the number of unoccupied d-state (hTs) of prepared catalysts are characterized by X-ray diffraction (XRD), temperature programmed reduction (TPR), X-ray photoelectron spectroscopy (XPS), inductively coupled plasma-atomic emission spectrometer (ICP-AES), high resolution transmission electron microscopy (HRTEM), rotating disk electrode (RDE) technique and X-ray absorption spectroscopy (XAS), respectively.
    This study is divided into two parts. In the first part, the 45 wt% carbon-supported Pt and PtAu NRs with aspect ratios of 1.84, 2.34, 3.75 and 4.00 (named as Pt-1, Pt-2, Pt-3 and PtAu, respectively) are prepared via FAM. The mass activity (MA) of Pt-3 is the highest, and PtAu has lower MA than Pt-3, due to the coverage of some Pt surface atoms by Au. Nevertheless, after 1000 cycles of accelerated durability test (ADT), PtAu NRs show the best ORR activity and stability with only a decay of 24 %. The hTs value measured by XAS spectra shows that PtAu NRs have lower hTs, implying that more electrons transfer to Pt d-state, the Pt-O- binding is weaker and the ORR performance is promoted.
    In the second part, the 45 wt% of carbon-supported PtAu, PtAg and PtPd NRs with a Pt core/M shell structure, aspect ratio of 4.0, and growth along (111) direction are prepared by FAM. The ORR activity of PtAu is the best among the Pt-based catalysts, and that of PtAg NRs is the second, which is 1.2 times higher than that of Pt/C. However, after 1000 cycles of ADT, due to the surface Pt segregation during ADT, the structure of PtAu becomes unstable, deteriorating the ORR performance. On the contrary, PtAg NRs show the best stability among the Pt3M catalysts with only a slight decay of 9 % attributed to the stable structure through Ag alloying during ADT.

    摘要 I Abstract III 致謝 V Table of Contents VII List of Figures X List of Tables XIII Chapter 1 Introduction 1 1.1 The design of cathode catalysts with 1-D structure for ORR 2 1.2 The alloying effect of Pt nanocatalysts for ORR 6 1.3 Pt catalysts with core/shell structures 8 1.4 Correlation between fine structure and ORR activity of PtM catalysts 12 1.5 Motivation and approach 14 Chapter 2 Experimental Section 15 2.1 Preparation of catalysts 15 2.1.1 Preparation of Pt/C NRs with different aspect ratios and PtAu NRs 15 2.1.2 Preparation of Pt3M/C NRs 18 2.2 Characterization of catalysts 19 2.2.1 Thermal gravimetric analysis (TGA) 19 2.2.2 Inductively coupled plasma – atomic emission spectroscopy (ICP-AES) 19 2.2.3 X-ray diffraction (XRD) 19 2.2.4 X-ray absorption spectroscopy (XAS) 21 2.2.5 High resolution transmission electron microscopy (HRTEM) 23 2.2.6 Temperature programmed reduction (TPR) 23 2.2.7 X-ray photoelectron spectroscopy (XPS) 23 2.2.8 Linear sweep voltammetry (LSV) 24 2.2.9 Cyclic voltammograms (CV) 24 2.2.10 Accelerated durability test (ADT) 25 Chapter 3 Results and Discussion 26 3.1 The structural and electrochemical characterizations of carbon-supported Pt NRs with different aspect ratios and PtAu NRs 26 3.1.1 HRTEM characterization 26 3.1.2 XRD and XPS characterizations 29 3.1.3 CV characterization 29 3.1.4 LSV and ADT characterizations 33 3.1.5 XAS characterization 36 3.1.6 Summary 39 3.2 The structural and electrochemical characterizations of carbon-supported Pt3M (M=Pd, Ag and Au) NRs 40 3.2.1 ICP and HRTEM characterizations 40 3.2.2 XRD and EXAFS characterizations 40 3.2.3 TPR and XPS characterizations 45 3.2.4 LSV and ADT characterizations 49 3.2.5 The relation of DFT calculations and ORR activity 52 3.2.6 Summary 52 Chapter 4 Conclusions 55 References 57

    [1] X. Sun, D. Li, Y. Ding, W. Zhu, S. Guo, Z. L. Wang and S. Sun, J. Am. Chem. Soc. 136 (2014) 5745-5749.
    [2] J. A. Wittkopf, J. Zheng and Y. Yan, ACS Catal. 4 (2014) 3145-3151.
    [3] H. A. Gasteiger, S. S. Kocha, B. Sompalli and F. T. Wagner, Appl. Catal. B: Environ. 56 (2005) 9-35.
    [4] H. A. Gasteiger, J. E. Panels and S. G. Yan, J. Power Sources 127 (2004) 162-171.
    [5] P. Strasser, S. Koh, T. Anniyev, J. Greeley, K. More, C. F. Yu, Z. C. Liu, S. Kaya, D. Nordlund, H. Ogasawara, M. F. Toney and A. Nilsson, Nat. Chem. 2 (2010) 454-460.
    [6] B. Lim, M. Jiang, P. H. C. Camargo, E. C. Cho, J. Tao, X. Lu, Y. Zhu and Y. Xia, Science 324 (2009) 1302-1305.
    [7] S. Sun, F. Jaouen and J. P. Dodelet, Adv. Mater. 20 (2008) 3900-3904.
    [8] X. Cao, Y. Han, C. Gao, X. Huang, Y. Xu and N. Wang, J. Mater. Chem. A 1 (2013) 14904-14909.
    [9] Z. Chen, M. Waje, W. Li and Y. Yan, Angew. Chem. Int. Ed. 46 (2007) 4060-4063.
    [10] Y. C. Tseng, H. S. Chen, C. W. Liu, T. H. Yeh and K. W. Wang, J. Mater. Chem. A 2 (2014) 4270-4275.
    [11] X. Yu and S. Ye, J. Power Sources 172 (2007) 133-154.
    [12] W. Bi, G. E. Gray and T. F. Fuller, Electrochem. Solid-State Lett. 10 (2007) B101-B104.
    [13] Y. Kang and C. B. Murray, J. Am. Chem. Soc. 132 (2010) 7568-7569.
    [14] J. Zhang, K. Sasaki, E. Sutter and R. R. Adzic, Science 315 (2007) 220-222.
    [15] Y. Y. Feng, J. H. Ma, G. R. Zhang, G. Liu and B. Q. Xu, Electrochem. Commun. 12 (2010) 1191-1194.
    [16] J. X. Wang, H. Inada, L. Wu, Y. Zhu, Y. M. Choi, P. Liu, W. P. Zhou and R. R. Adzic, J. Am. Chem. Soc. 131 (2009) 17298-17302.
    [17] J. Zhang, F. H. B. Lima, M. H. Shao, K. Sasaki, J. X. Wang, J. Hanson and R. R. Adzic, J. Phys. Chem. B 109 (2005) 22701-22704.
    [18] S. Guo, S. Zhang, D. Su and S. Sun, J. Am. Chem. Soc. 135 (2013) 13879-13884.
    [19] C. W. Liu, Y. C. Wei, C. C. Liu and K. W. Wang, J. Mater. Chem. 22 (2012) 4641-4644.
    [20] S. P. Hsu, C. W. Liu, H. S. Chen, T. Y. Chen, C. M. Lai, C. H. Lee, J. F. Lee, T. S. Chan, L. D. Tsai and K. W. Wang, Electrochim. Acta 105 (2013) 180-187.
    [21] H. S. Chen, Y. T. Liang, T. Y. Chen, Y. C. Tseng, C. W. Liu, S. R. Chung, C. T. Hsieh, C. E. Lee and K. W. Wang, Chem. Commun. 50 (2014) 11165-11168.
    [22] S. Mukerjee, S. Srinivasan, M. P. Soriaga and J. McBreen, J. Electrochem. Soc. 142 (1995) 1409-1422.
    [23] T. H. Yeh, C. W. Liu, H. S. Chen and K. W. Wang, Electrochem. Commun. 31 (2013) 125-128.
    [24] S. I. Zabinsky, J. J. Rehr, A. Ankudinov, R. C. Albers, M. J. Eller, Phys. Rev. B 52 (1995) 2995-3009.
    [25] A. Pozio, M. D. Francesco, A. Cemmi, F. Cardellini and L. Giorgi, J. Power Sources 105 (2002) 13-19.
    [26] E. A. Ticianelli, J. G. Beery and S. Srinivasn, J. Appl. Electrochem. 21 (1991) 597-605.
    [27] E. Antolini, L. Giorgi, A. Pozio and E. Passalacqua, J. Power Sources 77 (1999) 136-142.
    [28] S. Guo, D. Li, H. Zhu, S. Zhang, N. M. Markovic, V. R. Stamenkovic and S. Sun, Angew. Chem. Int. Ed. 52 (2013) 3465-3468.
    [29] M. Peuckert, T. Yoneda, R.A. Dalla Betta and M. Boudart, J. Electrochem. Soc. 133 (1986) 944-947.
    [30] Y. Xu, A.V. Ruban and M. Mavrikakis, J. Am. Chem. Soc. 126 (2004) 4717-4725.
    [31] Y. C. Wei, C. W. Liu, Y. W. Chang, C. M. Lai, P. Y. Lim, L. D. Tasi and K. W. Wang, Int. J. Hydrogen Energy 35 (2010) 1864-1871.
    [32] K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz and N. M. Markovic, Electrochim. Acta 53 (2008) 3181-3188.
    [33] R. Woods, Electroanalytical Chemistry, vol. 9, Ed. A. J. Bard: New York, (1976).
    [34] J. J. Lv, J. X. Feng, S. S. Li, Y. Y. Wang, A. J. Wang, Q. L. Zhang, J. R. Chen and J. J. Feng, Electrochim. Acta 133 (2014) 407-413.
    [35] Y. C. Wei, C. W. Liu and K. W. Wang, Chem. Commun. 47 (2011) 11927-11929.
    [36] C. W. Liu, Y. C. Wei and K. W. Wang, J. Phys. Chem. C 115 (2011) 8702-8708.
    [37] C. W. Chou, S. Chu, H. J. Chiang, C. Y. Huang, C. J. Lee, S. R. Sheen, T. P. Perng and C. T. Yeh, J. Phys. Chem. B 105 (2001) 9113-9117.
    [38] B. N. Wanjala, J. Luo, R. Loukrakpam, B. Fang, D. Mott, P. N. Njoki, M. Engelhard, H. R. Naslund, J. K. Wu, L. Wang, O. Malis and C. J. Zhong, Chem. Mater. 22 (2010) 4282-4294.
    [39] L. Timperman, A. Lewera, W. Vogel and N. A. Vante, Electrochem. Commun. 12 (2010) 1772-1775.
    [40] M. Yin, Y. Huang, Q. Lv, L. Liang, J. Liao, C. Liu and W. Xing, Electrochim. Acta 58 (2011) 6-11.
    [41] Y. T. Liang, S. P. Lin, C. W. Liu, S. R. Chung, T. Y. Chen, J. H. Wang and K. W. Wang, Chem. Commun. 51 (2015) 6605-6608.

    QR CODE
    :::