跳到主要內容

簡易檢索 / 詳目顯示

研究生: 邱志煜
Chih-yu Chiu
論文名稱: 白光 LED 空間色偏分佈之研究
The study of angular correlated color temperature deviation for white light LEDs
指導教授: 孫慶成
Ching-cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 100
語文別: 中文
論文頁數: 101
中文關鍵詞: 發光二極體空間色偏
外文關鍵詞: LED, ACCTD
相關次數: 點閱:12下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文中,我們將研究不同的白光LED 封裝型式其在空間上色彩均勻性的差異。我們將利用已建立之YAG 螢光粉模型,在相同色溫下分析各種封裝型式的空間色偏。
    接著針對特定封裝形式,藉由改變其封裝體外型,在固定整體色溫下有效降低該封裝形式之空間色偏,亦即增加其空間上的色彩均勻性。
    最後,再分析不同封裝形式在中場範圍內空間色偏的表現與定義其色彩之準遠場距離。


    In this thesis, we study color uniformity of white light LEDs with different package types. Based on the YAG phosphor model, we analyze the angular correlated color temperature deviation (ACCTD) for white light LEDs with different package types and find out which one is lowest.
    After that, we modify the ACCTD of specific package types with the same correlated color temperature by changing the structure of the package. Finally, we study the ACCTD changes in mid-field region for white light LEDs and
    define the distance of quasi far-field in color.

    摘要 ........................................................................................................................ i Abstract ................................................................................................................. ii 誌謝 ...................................................................................................................... iii 目錄 ...................................................................................................................... vi 圖目錄 .................................................................................................................. ix 表目錄 ................................................................................................................. xv 第一章 緒論 ......................................................................................................... 1 1.1 LED 發展背景 ......................................................................................... 1 1.2 研究動機與目的 ..................................................................................... 4 1.3 論文大綱 ................................................................................................. 6 第二章 基本原理 ............................................................................................... 7 2.1 引言 ......................................................................................................... 7 2.2 LED 發光原理 ......................................................................................... 7 2.3 螢光粉原理 ........................................................................................... 10 2.4 混光原理 ............................................................................................... 13 2.5 封裝技術 ............................................................................................... 16 第三章 白光 LED 之空間色偏分析 ............................................................. 22 3.1 引言 ....................................................................................................... 22 3.2 螢光粉模型 ........................................................................................... 22 3.3 文獻回顧 ............................................................................................... 25 3.4 空間色偏之定義 ................................................................................... 27 3.5 不同封裝型式空間色偏之分析 ........................................................... 28 3.5.1 封裝架構架構之建立與分析 ..................................................... 29 3.6 不同封裝體大小空間色偏之分析 ....................................................... 34 3.6.1 封裝架構之建立 ......................................................................... 34 3.6.2 不同封裝體大小之空間色偏分析 ............................................. 35 3.7 空間色偏之優化 .................................................................................... 41 3.7.1 半球封裝增厚之空間色偏分析 ................................................. 44 3.7.2 遠離式半球封裝增厚之空間色偏分析 ..................................... 46 3.7.3 半球封裝增厚並改變螢光粉層結構之空間色偏分析 .............. 48 3.7.4 半球封裝增厚並改變透鏡結構之空間色偏分析 ...................... 49 3.7.5 空間色偏優化結論 ...................................................................... 52 3.7.6 半球封裝增厚形式實驗 ............................................................. 53 第四章 白光 LED 之中遠場空間色偏分析 ................................................. 58 4.1 引言 ....................................................................................................... 58 4.2 中場理論與相關係數 ........................................................................... 58 4.3 不同封裝形式在中場之空間色偏 ....................................................... 60 4.4 不同封裝形式色彩之準遠場定義 ....................................................... 64 第五章 結論 ..................................................................................................... 71 參考文獻 ............................................................................................................. 73 中英文名詞對照表 ............................................................................................. 77

    [1] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to Solid State Lighting (John
    Wiley & Sons, New York, 2002).
    [2] 高工 LED 網,
    http://www.gg-led.com/s.php?page=14&cat=%D0%C2%CE%C5&k=GaAsP&OB=2S.
    [3] Cree, Inc., http://www.cree.com.
    [4] J. K. Sheu, S. J. Chang, C. H. Kuo, Y. K. Su, L. W. Wu, Y. C. Lin, W. C. Lai, J. M. Tsai,
    G. C. Chi, and R. K. Wu, “White-light emission from near UV InGaN-GaN LED chip
    precoated with blue/green/red phosphors”, IEEE Photon. Technol. Lett. 15, 18-20
    (2003).
    [5] L. Vriens, G. Acket, and C. Ronda, “UV/blue LED–phosphor device with efficient
    conversion of UV/blues light to visible light, United States Patent,” United States Patent,
    US 5813753, Sep. 29 (1998).
    [6] S. Jeon, P. Eun, Y. H. Park, Choi, J. C. Park, H. Lee, Gwang Chul, Kim, and T. Whan
    “White-light generation through ultraviolet-emitting diode and white-emitting
    phosphor,” Appl. Phys. Lett. 85, 3696-3698 (2004).
    [7] T. F. McNulty, D. D. Doxsee, and J. W. Rose, “UV reflector and UV-based light source
    having reduced UV radiation leakage incorporating the same,” United States Patent, US
    6686676 B2, Feb. 3 (2004).
    [8] Y Sato, Takahashi, and S Sato, “Full-color fluorescent display devices using a
    near-UV light-emitting diode,” Jpn. J. Appl. Phys. 35, 838-839 (1996).
    [9] S. Muthu, “Controlling method and system for RGB based LED luminary,” United
    States Patent, US 6507159 B2, Jan. 14 (2003).
    [10] S. Muthu, F. J. P. Schuurmans, and M D Pashle , “Red, green, and blue LEDs for white
    light illumination,” IEEE J. Sel. Top. Quantum Electron. 8, 333-338 (2002).
    [11] C. C. Sun, I. Moreno, Y. C. Lo, B. C. Chiu, and W. T. Chien, “Collimating lamp with
    well color mixing of red/green/blue LEDs,” Opt. Express 20 (S1), A75–A84 (2012).
    [12] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a
    nitride compound semiconductor and a phosphor containing a garnet fluorescent
    material,” United States Patent, US 5998925, Dec.7 (1999).
    [13] R. Mueller-Mach, G. Mueller, and M. R. Krames, H. A. Höppe, F. Stadler, W. Schnick,
    T Juestel, and P Schmidt, “Highly efficient all-nitride phosphor- converted white light
    emitting diode,” Phys. Stat. Sol. 202, 1727-1732 (2005).
    [14] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J.
    Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting
    technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310-320 (2002).
    [15] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor Blends for
    Generating White Light from Near-UV/Blue Light-Emitting Devices,” United States
    Patent, US 6685852 B2, Feb. 3 (2004).
    [16] H. Wu, X. Zhang, C. Guo, J. Xu, M. Wu, Q. Su, “Three-band white light from
    InGaN-based blue LED chip precoated with Green/red phosphors, Photonics Technology
    Letters,” IEEE Photon. Technol. Lett. 17, 1160-1162 (2005).
    [17] R. J. Xie, N. Hirosaki, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted
    white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90,
    191101 (2007).
    [18] Philips Lumileds Lighting Company, http://www.philipslumileds.com.
    [19] C. C. Sun, T. X. Lee, S. H. Ma, Y. L. Lee, and S. M. Huang, “Precise optical modeling
    for LED lighting verified by cross correlation in the midfield region,” Opt. Lett. 31,
    2193-2195 (2006).
    [20] 何信穎,白光LED 之YAG 螢光粉光學模型之研究,國立中央大學光電科學與工程
    學系碩士論文,民國九十六年。
    [21] 紀葦世,高效能YAG 螢光粉之特性量測與模型,元智大學光電工程研究所碩士論
    文,民國九十九年。
    [22] 陳靜儀,矽酸鹽螢光粉應用於白光LED 封裝之光學模型,國立中央大學光電科學
    與工程學系碩士論文,民國九十六年。
    [23] E. F. Schubert, Light Emitting Diode (Cambridge University Press, Cambridge, 2003).
    [24] 郭浩中、賴芳儀和郭守義,LED 原理與應用,五南出版有限公司,民國九十八年。
    [25] W. Shockley, Electrons and Holes in Semiconductors (D. Van Nostrand Company, New
    York, 1950).
    [26] 劉如熹、劉宇桓,發光二極體用氧氮螢光粉介紹,全華圖書股份有限公司,中華民
    國九十五年。
    [27] 大田 登,色彩工程學,二版,全華科技圖書公司,民國九十五年。
    [28] CHENGTIAN TECHNOLOGY, http://www.ledct.cn/jishu/cie.htm.
    [29] Nichia, http://www.nichia.co.jp/jp/about_nichia/index.html.
    [30] W. D. Collins, M. R. Krames, G. J. Verhoeckx, and N. J. M. Leth, “Using electrophoresis
    to produce a conformally coated phosphor-converted Light emitting semiconductor,”
    United States Patent, US 6576488, Jun. 10 (2003).
    [31] Cree Xlamp XM-L data sheet,
    http://www.cree.com/~/media/Files/Cree/LED%20Components%20and%20Modules/XL
    amp/XLamp%20Application%20Notes/XLamp_XM_SH.pdf.
    [32] LED professional,
    http://www.led-professional.com/products/led-production-test-equipment/gpd-global201
    9s-pcd4h-dispense-pump-improves-yields-for-led-manufacturers.
    [33] K. Wang, D. Wu, F. Chen, Z. Liu, X. Luo, and S. Liu, “Angular color uniformity
    enhancement of white light-emitting diodes integrated with freeform lenses,” Opt. Lett.
    35, 1860-1862 (2010).
    [34] N. Narendran, Y. Gu, J. P. Freyssinier- ova, and Y Zhu, “E tracting phosphor-scattered
    photons to improve white LED efficienc ,” Ph Stat. Sol. (a) 202, R60-R62 (2005).
    [35] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone and Y. Park, “Strongly Enhanced
    Phosphor Efficiency in GaInN White Light-Emitting Diodes Using Remote Phosphor
    Configuration and Diffuse Reflector Cup,” Jpn. J. Appl. Express Lett. 44, 649-651
    (2005).
    [36] Z Liu, S Liu, K Wang, and X Luo, “Effects of phosphor’s location on LED packaging
    performance,” ICEPT-HDP, 1-7 (2008).
    [37] Sun, hen, W T hien, Y hen, T X Lee, and T H Yang, “Precise
    phosphor model and the application to LED package of high uniformit in spatial T,”
    The Second International Conference on White LEDs and Solid State Lighting,
    Proceedings, paper TA2–2 (2009).
    [38] Breault Research Organization, http://www.breault.com.
    [39] D Toublanc, “Hen e -Greenstein and Mie phase functions in Monte Carlo radiative
    transfer computations,” ppl Opt 35, 3270-3274 (1996).
    [40] Z. Liu and S. Liu, “Optical Analysis of Color Distribution in White LEDs With Various
    Packaging Methods,” IEEE Photon. Technol. Lett. 20, 2027-2029 (2008).
    [41] Y. Shuai, Y Z He, T Tran, and F G Shi, “ ngular T uniformit of phosphor
    converted white LEDs: effects of phosphor materials and packaging structures,” IEEE
    Photon. Technol. Lett. 23(3), 137–139 (2011).
    [42] Á . Borbély and S. G. Johnson, “Performance of phosphor coated LED optics in ra trace
    simulations,” Proc. SPIE 5530, 266-273 (2004).
    [43] H T Huang, Tsai, and Y P Huang, “ onformal phosphor coating using pulsed
    spra to reduce color deviation of white LEDs,” Opt E press 18, A201-A206 (2010).
    [44] 李敦儒,白光LED 之封裝效率之研究,中央大學光電工程研究所碩士論文,民國
    一百年。
    [45] 謝志欽,LED 準遠場之研究與防眩光學之設計,中央大學光電工程研究所碩士論
    文,民國九十六年。
    [46] C. C. Sun, W. T. Chien, I. Moreno, C. C. Hsieh, and Y. C. Lo, “Analysis of the far-field
    region of LEDs,” Opt. Express 17, 13918-13927 (2009).
    [47] M. R. Krames1, J. Bhat, D. Collins, N. F. Gardner, W. Gotz, C. H. Lowery, M.
    Ludowise, P. S. Martin, G. Mueller, R. Mueller-Mach, S. Rudaz, D. A. Steigerwald, S.
    A. Stockman, and J. J. Wierer, “High-Power III-Nitride Emitters for Solid-State
    Lighting,” Phys. Stat. Sol. (a) 192, 237-245 (2002).

    QR CODE
    :::