| 研究生: |
許維文 Wei-wen Hsu |
|---|---|
| 論文名稱: |
一些退化擬線性波動方程的解的性質. The Behavior of Solutions for Some Degenerate Quasilinear Wave Equations. |
| 指導教授: |
洪盟凱
John M. Hong |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 數學系 Department of Mathematics |
| 畢業學年度: | 95 |
| 語文別: | 英文 |
| 論文頁數: | 20 |
| 中文關鍵詞: | 黎曼問題 、退化擬線性波動方程 、雙曲線型守恆律系統 |
| 外文關鍵詞: | Riemann problem, hyperbolic systems of conservation laws, Degenerate quasilinear wave equations |
| 相關次數: | 點閱:16 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
我們的論文主要在探討一些退化擬線性波動方程的解的性質。首先我們先探討線性退化波動方程,我們由d''Almbert formula 得到了解具有 L1-stability的性質。而在非線性的例子當中,我們由雙曲線型守恆律的 Lax method 及 Glimm method 得到了柯西黎曼問題在第一階段的估計解。並且在我們的論文當中,我們將會由一些例子,來探討退化擬線性波動方程的估計解的總變異量是否會接近無限大。
In this paper we consider the Cauchy problem of some degenerate quasilinear wave equations. We first study the behavior of solutions to the linear degenerate wave equation. We obtain the -stability of solutions for the linear case just by the d''Almbert formula. To the nonlinear degenerate case, the Lax method and Glimm method in hyperbolic systems of conservation laws are used to construct the approximate solution of Cauchy problem in the first time step. As we demonstrate in this paper, the total variation of approximate solution may go to infinity due to the degeneracy of equation. We will do the case study for the behavior of solutions for some particular case of degenerate quasilinear wave equations.
[1]C. Dafermos, Generalized characteristics and the structure of solutions of hyperbolic conservation laws, Ind. Univ. Math. J. 26 (1977), 1097-1119.
[2]C. Dafermos, Solutions of the Riemann problem for a class of conservation lawsby the viscosity method, Arch. Ration. Mech. Anal., 52 (1973), 1-9.
[3]G. Dal Maso, P. LeFloch and F. Murat, Definition and weak
stability of nonconservative products, J. Math. Pure. Appl., 74 (1995), 483-548.
[4]J. Glimm, Solutions in the large for nonlinear hyperbolic systems of equations, Comm. Pure Appl. Math., 18 (1956), 697-715.
[5]J. M. Hong, An extension of Glimm''s method to inhomogeneous strictly hyperbolic systems of conservation laws by "weaker than weaker" solutions of the Riemann problem, J. Diff. Equations, 222 (2006), 515-549.
[6]J. M. Hong and B. Temple, A Bound on the Total Variation of the Conserved Quantities for Solutions of a General Resonant Nonlinear Balance Law, SIAM J. Appl. Math. 64, No 3, (2004), pp 625-640.
[7]E. Isaacson and B. Temple, Convergence of $2 imes 2$ by Godunov method for a general resonant nonlinear balance law, SIAM J. Appl. Math. 55 (1995), pp 625-640.
[8]K. T. Joseph and P. G. LeFloch, Singular limits for the Riemann problem: general diffusion, relaxation, and boundary condition, in " new analytical approach to multidimensional
balance laws", O. Rozanova ed., Nova Press, 2004.
[9]S. Kruzkov, First order quasilinear equations with several space variables, Math. USSR Sbornik 10 (1970), 217-273.
[10]P. D. Lax, Hyperbolic system of conservation laws, II, Comm. Pure Appl. Math., 10 (1957), 537-566.
[11]T. P. Liu, The Riemann problem for general systems of conservation laws, J. Diff. Equations, 18 (1975), 218-234.
[12]T. P. Liu, Quaslinear hyperbolic systems, Comm. Math. Phys., 68 (1979), 141-172.
[13]C. Mascia and C. Sinestrari, The perturbed Riemann problem for a balance law, Advances in Differential Equations, 1996-041.
[14]O. A. Oleinik, Discontinuous solutions of nonlinear differential equations, Amer. Math. Soc. Transl. Ser. 2, 26 (1957), 95-172.
[15]C. Sinestrari, The Riemann problem for an inhomogeneous
conservation law without convexity, Siam J. Math. Anal., Vo28, No1, (1997), 109-135.
[16]C. Sinestrari, Asymptotic profile of solutions of conservation laws with source, J. Diff. and Integral Equations, Vo9, No3,(1996), 499-525.
[17]M. Slemrod and A. Tzavaras, A limiting viscosity approach for the Riemann problem in isentropic gas dynamics, Ind. Univ. Math. J. 38 (1989), 1047-1073.
[18]J. Smoller, Shock waves and reaction-dffusion equations, Springer, New York, 1983.
[19]A. Tzavaras, Waves interactions and variation estimates for self-similar zero viscosity limits in systems of conservation laws, Arch. Ration. Mech. Anal., 135 (1996), 1-60.
[20]A. Volpert, The space BV and quasilinear equations, Maths. USSR Sbornik 2 (1967), 225-267.