| 研究生: |
余翊菱 Yi-lin Yu |
|---|---|
| 論文名稱: |
以多壁奈米碳管吸附水中雙酚A之特性研究 The research of the adsorption properties between multi-walled carbon nanotubes and bisphenol A |
| 指導教授: |
秦靜如
Ching-Ju Monica Chin |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 環境工程研究所 Graduate Institute of Environmental Engineering |
| 畢業學年度: | 99 |
| 語文別: | 中文 |
| 論文頁數: | 103 |
| 中文關鍵詞: | 奈米碳管、雙酚A、氧化、吸附 |
| 外文關鍵詞: | oxidation, bisphenol A, carbon nanotube, adsorption |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於奈米碳管多方面運用於各材料上的發展,必定會造成排放之問題,造成水體的汙染及生態環境上的變遷影響,故本研究為進一步了解其內部特性及吸附機制,挑選四種常見之化學氧化法(HNO3、piranha、NH4OH 25 %: H2O2 30 % = 50:50加熱迴流;KOH高溫氧化)作為碳管改質的方式,進行對於同樣被廣泛利用且被間接排入水體中的雙酚A之吸附實驗,探討其吸附行為與機制,有助於解決自然水體環境汙染問題。
研究發現經過氧化後之碳管其表面積、純度與官能基皆有增加之趨勢,動力吸附實驗方面,達吸附平衡時間由快至慢為A-MWCNTs(原始購得碳管)、N-MWCNTs(經HNO3氧化後碳管)、K-MWCNTs(經KOH氧化後碳管),且其飽和吸附量各為0.3116、0.2039、0.5919 mmole/g,且皆較符合擬二階動力學模式。而在pH值之影響方面,發現主要受到雙酚A本體之解離作用影響,當雙酚A解離後帶負電與帶有負電官能基之奈米碳管表面定性正好相同,故雙酚A與碳管間形成靜電斥力,使得各種碳管之吸附環境pH值越高,有吸附量下降之趨勢。
等溫吸附實驗方面,主要影響吸附量多寡的原因為碳管的比表面積,尤其是K-MWCNTs,其氧化之強破壞力產生的高表面積而造成高吸附量,但吸附力仍受各氧化程序後產生之表面酸含氧官能基作用,而使吸附量下降,這也是A-MWCNTs之表面積雖高於N-MWCNTs,但相對吸附量卻相反之原因。在15、25、35℃下A-MWCNTs與N-MWCNTs皆符合Langmuir isotherm model,而K-MWCNTs則無法判定。且△Ho皆小於零,表示吸附過程為放熱反應,△Go亦皆小於零,可判定吸附反應為自發性。
Due to various applications of carbon nanotubes, their discharge into natural water is expected and their adsorption phenomena should be studied to understand their fate and transport. In this study, four common chemical oxidation methods were chosen to modify multi-walled carbon nanotubes (MWCNTs), they are, HNO3, piranha, NH4OH 25 %: H2O2 30 % = 50:50, and KOH. Bispenol A (BPA) were adsorbed to investigate the influences of different oxidation methods of MWCNTs on the adsorption mechanisms.
It was found that, with proper oxidation parameters, nitric acid could introduce significant amount of oxygen-containing surface groups without altering the surface structure. Oxidation by KOH increased the surface area of MWCNTs dramatically and introduced oxygen-containing surface groups of the amount similar to that nitric-acid-treated MWCNTs. Thus the adsorption of BPA was only conducted by A-MWCNTs (as-purchased MWCNTs), N-MWCNTs (oxidized by HNO3), and K-MWCNTs (oxidized by KOH). The adsorption rates the fastest to the slowest were A-MWCNTs, N-MWCNTs, and K-MWCNTs and could be described by the pseudo-second order kinetic model. The adsorption capacities of A-MWCNTs, N-MWCNTs, and K-MWCNTs were 0.3116, 0.2039, and 0.5919 mmole/g, respectively. Comparison between the adsorption capacities of A-MWCNTs and N-MWCNTs showed that the oxygen-containing group hindered the π-π interactions and reduced the adsorption of BPA. The adsorption capacity was affected by solution pH, mainly due to the dissociation of BPA. Deprotonation of BPA leaded to electrostatic repulsions between BPA molecules and the surface of MWCNTs at high solution pH and, thus, reduction in the adsorption capacity.The enthalpy and free energy showed that adsorption of BPA on MWCNTs were exothermic and spontaneous.
1. S.Iijima, “Helical Microtubules of Graphitic Carbon,” Nature, 354, pp.56 (1991).
2. 李元堯,「21世紀的尖端材料-奈米碳管」,化工技術,第11卷第2期,第140-159頁,2003。
3. 洪昭南、徐逸明、王宏達,「奈米碳管結構及特性簡介」,化工,第49卷第1期,第23-30頁,2002。
4. 王裕祥,「利用高分子材料及電弧放電法製造奈米碳管」,碩士論文,中正大學化學工程研究所,嘉義,2002。
5. 化工產業技術知識網: http://www.chemtech.com.tw
6. 黃建良、黃淑娟,「奈米碳纖與奈米碳管合成技術簡介」,化工,第50卷第2期,第18至25頁,2003。
7. J.M. Lambert, P.M. Ajayan, P. Bernier, J.M. Planeix, V. Brotons, B. Coq, and J. Castaing,“ Improving conditions towards isolating single-shell carbon nanotubes,“ Chemical Physics Letters, 226(3–4), pp.364–371 (1994).
8. Y.A. Kim, H. Muramatsu, T. Hayashi, M. Endo,M. Terrones, and M.S. Dresselhaus,“ Thermal stability and structural changes of double-walled carbon nanotubes by heat treatment.,“ Chemical Physics Letters, 398(1–3), pp.87–92 (2004).
9. M. Yudasaka, H. Kataura, T. Ichihashi, L.C. Qin, S. Kar, and S. Iijima,“ Diameter enlargement of HiPco single-wall carbon nanotubes by heat treatment,“ Nano Letter, 1(9), pp.487–489 (2001).
10. M. Yudasaka, T. Ichihashi, D. Kasuya, H. Kataura, and S. Iijima,“ Structure changes of single-wall carbon nanotubes and single-wall carbon nanohorns caused by heat treatment,“ Carbon ,41(6), pp.1273–1280 (2003).
11. P.X. Hou, C. Liu, and H.M. Cheng,“ Purification of carbon nanotubes,” Carbon ,46 ,pp.2003–2025 (2008).
12. P. M. Ajayan, T. W. Ebbesen, T Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura,“ Opening carbon nanotubes with oxygen and implications for filling,” Nature, 362(6420), pp.522–525 (1993).
13. T. W. Ebbesen, P. M. Ajayan, H. Hiura, and K. Tanigaki,“ Purification of nanotubes,“ Nature , 367(6463), pp.519–9 (1994).
14. D. Zhang, L. Shi, J. Fang, X. Li, and K. Dai,” Preparation and modification of carbon nanotubes,” Materials Letters, 59, pp.4044 – 4047 (2005).
15. F. Avile´s, J.V. Cauich-Rodrı´guez, L. Moo-Tah, A. May-Pat, and R. Vargas-Coronado,” Evaluation of mild acid oxidation treatments for MWCNT Functionalization,” Carbon, 47, pp.2970-2975(2009).
16. C. Lu, F. Su, and S. Hu,” Surface modification of carbon nanotubes for enhancing BTEX adsorption from aqueous solutions,” Applied Surface Science, 254, pp.7035–7041 (2008).
17. C. Lu and H. Chiu,” Chemical modification of multiwalled carbon nanotubes for sorption of Zn2+ from aqueous solution,” Chemical Engineering Journal, 139, pp. 462–468 (2008).
18. 譚仁豪,〝微波化學程序改質之奈米碳管吸附水中鉻離子之研究〞,國立雲林科技大學環境與安全衛生工程系碩士論文,2008。
19. O.K. Park,T. Jeevananda, N. H. Kim, S.I. Kim, and J.H. Lee,” Effects of surface modification on the dispersion and electrical conductivity of carbon nanotube/polyaniline composites,” Scripta Materialia, 60, pp.551–554 (2009).
20. 工業污染防治技術手冊-有機溶劑污染控制,1995。
21. P.C. Hiemenz and Raj Rajagopalan, “ Principles of Colloid and Surface Chemistry,“3nd ed, Marcel Dekker, Inc. , New York, pp.405-407, pp.411-412 (1997).
22. Faust and Samuel Denton,“Adsorption Process for Water Treatment Samuel D.”Faust and Osman M. Aly, Boston Butterworth, pp.16-22, pp.185-191 (1987).
23. 劉明翰,「粉狀活性碳吸附氯化汞之研究:操作參數之影響及恆溫吸附模式之建立」,國立中山大學環境工程研究所論文,2001。
24. 林哲仁,「活性碳之評估與選擇」,環境工程會刊,第六卷第一期,第23-24頁,1995。
25. 劉曾旭,「活性碳製造技術及應用」,產業調查與技術 第一二七期,第84-88頁,1999。
26. L.Li, P.A. Quinlivan, and D.R.U. Knppe, “ Effect of Activated Carbon Surface Chemistry and Pore Structure on the Adsorption of Organic Contaminants from Aqueous Solution,“ Carbon, 40, pp.2085-2100 (2002).
27. 邱煥宗,“奈米碳管吸附水中二價鋅離子之研究”,國立中興大學環境工程研究所碩士論文,2005。
28. Y.H. Li, S. Wang, Z. Luan, J.Ding, C. Xu,, and D. Wu,“ Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes,” Carbon, 41, pp.1057-1062, (2003).
29. F. Su, C. Lu, and S. Hu, “ Adsorption of benzene, toluene, ethylbenzene and p-xylene by NaOCl-oxidized carbon nanotubes,” Colloids and Surfaces A: Physicochemical Engineering Aspects 353, pp.83–91 (2010)
30. C.Y. Kuo and H.Y. Lin, “ Adsorption of aqueous cadmium (II) onto modified multi-walled carbon nanotubes following microwave/chemical treatment,” Desalination, 249, pp. 792–796 (2009).
31. S.Gotovac, H.Honda, Y.Hattori, K.Takahashi, H.Kanoh, and K.Kaneko, ” Effect of nanoscale curvature of single-walled carbon nanotubes on adsorption of polycyclic aromatic hydrocarbons,” Nano Letters,7, pp. 583–587 (2007).
32. J. Zhang, J.K. Lee, Y. Wu, and R. W. Murray, ” Photoluminescene
and electronic interaction of anthracene derivatives adsorbed
onsidewalls of single-walled carbon nanotubes,” Nano Letter, 3, pp.403–407 (2003).
33. Z. Wang, C. Liu, Z. Liu, H. Xiang, Z. Li, and Q. Gong,“ π-πinteraction enhancement on the ultrafast third-order optical nonlinearity of carbon nanotubes/polymer composites,” Chemical Physics Letters, 407, pp.35–39.(2005).
34. Y.Zhang, S.Yuan, W.Zhou, J.Xu, and Y.Li,” Spectroscopic evidence and molecular simulation investigation of the pi-pi interaction between pyrene molecules and carbon nanotubes,” Journal of Nanoscience and Nanotechnology, 7, pp.2366–2375 (2007).
35. F. Tournus, S. Latil, M. I. Heggie, and J.C. Charlier,” π-stacking
interaction between carbon nanotubes and organic molecules,”
Physical Review B, 72, pp.75431 (2005).
36. L. M. Woods, Ş. C. Bădescu, and T. L. Reinecke,” Adsorption of simple
benzene derivatives on carbon nanotubes,” Physical. Review B,
75 (1-9), 155415 (2007).
37. A. Star,T.R. Han, J.C.P. Gabriel, K. Bradley, and G. Gru,” Interaction of aromatic compounds with carbon nanotubes:correlation to the Hammett parapeter of the substituent and measured carbon nanotube FET response, ” Nano Letter, 3, pp.1421–1423 (2003).
38. D. Lin and B. Xing,” Adsorption of Phenolic Compounds
by Carbon Nanotubes: Role of Aromaticity and Substitution of Hydroxyl Groups,” Environmental Science Technology, 42, pp.7254–7259 (2008).
39. C. Lu, Y.L. Chung, and K.F. Chang,“ Adsorption of trihalomethanes from water with carbon nanotubes,” Water Research, 39, pp.1183–1189 (2005).
40. M. A. Salam and R.C. Burk, “ Thermodynamics of pentachlorophenol adsorption from aqueous solutions by oxidized multi-walled carbon nanotubes,” Applied Surface Science, 255, pp.1975–1981 (2008).
41. 鍾孟佳,「奈米碳管吸附水中腐植酸之研究」,國立中興大學環境工程研究所碩士論文,2005。
42. Y.J. Yao, F.F Xu, M. Chen, Z.X Xu, and Z.W Zhu,“Adsorption behavior of methylene blue on carbon nanotubes,” Bioresource Technology, 101, pp.3040–3046 (2010).
43. G.C. Chen, X.Q Shan, Y.Q Zhou, X.E Shen, H.L. Huang, and S. U. Khan,“Adsorption kinetics, isotherms and thermodynamics of atrazine on surface oxidized multiwalled carbon nanotubes,” Journal of Hazardous Materials, 169, pp.912–918 (2009).
44. M. Mokhtar, M.A. Salam, S.N. Basahel, S.A. Al-Thabaiti, and A.Y. Obaid,“Removal of chlorophenol from aqueous solutions by multi-walled carbon nanotubes: Kinetic and thermodynamic studies,” Journal of Alloys and Compounds, 500, pp.87–92(2010).
45. C.A. Staples, P.B.Dom, G.M. Klecka, and S.T. O’Blook,” A review of the environmental fate, effects, and exposures of bisphenol A,“Chemosphere, 36, pp.2149–2173 (1998).
46. T.Yamamoto and A.Yasuhara, “ Quantities of bisphenol a leached from plastic waste samples,” Chemosphere, 38, pp.2569-2576 (1999).
47. J.Sajikia, K.Takahashia, and J.Yonekubo, “ Sensitive method for the determination of bisphenol-A in serum using two systems of high-performance liquid chromatography,” Journal of Chromatogrphy B, 736, pp.255-261 (1999).
48. 行政院環境保署環境檢驗所,「環境荷爾蒙-雙酚A」,第43期,2002。
49. A.V. Krishnan, P. Stathis, S.F. Permuth, L.Tokes, and D.Feldman, “ Bisphenol-A: an estrogenic substance is released from polycarbonate flasks during autoclaving,” Endocrinology, 132, pp.2279-2286 (1993).
50. 行政院衛生署,「藥物食品安全周報」,第123期,2008。
51. 陳福安,行政院環境保護署九十三年度科技專案研究計畫,「環境荷爾蒙調查研究(3/3)」,大仁技術學院,2004。
52. J.Zhao, Y.Li, C.Zhang, Q.Zeng, and Q. Zhou,” Sorption and degradation of bisphenol A by aerobic activated sludge,” Journal of Hazardous Materials, 155, pp.305–311 (2008).
53. G.Liu, J.Ma, X.Li , and Q.Qin,“ Adsorption of bisphenol A from aqueous solution onto activated carbons with different modification treatments,” Journal of Hazardous Materials, 164, pp. 1275–1280 (2009).
54. B.Z. Dong, L. Wang, N.Y. Gao, “ The removal of bisphenol A by ultrafiltration,” Desalination, 221, pp.312–317 (2008).
55. Y. Zhang, C. Causserand, P. Aimar, and J.P. Cravedi,” Removal of bisphenol A by a nanofiltration membrane in view of drinking water production,” Water Research, 40, pp.3793–3799 (2006).
56. Y.H. Li, S.Wang, J.Wei, X.Zhang, C.Xu,H.Luan, D.Wu, and B.Wei, “ Lead adsorption on carbon nanotubes,” Chemical Physics Letters, 357, pp.263-266 (2002).
57. Y.H. Li, S.Wang, Z.Luan, and J. Ding, C.Xu,“ Adsorption of cadmium(Ⅱ) from aqueous solution by surface oxidized carbon nanotubes,” Carbon, 41, pp.1057-1062 (2003).
58. J. Barkauskas and F.S. Cannon, “ Potentimetric titrations : characterize
functional groups and adsorbed species on activated carbon,” http://
www.chf.vu.lt/CWN/C03_PT.pdf
59. Y. EI-Sayed and T. J. Bandosz, “ Effect of increased basicity of
activated carbon surface on valeric acid adsorption from aqueous solution
activated carbon,” Chemical Physics Letters, 5, pp.4892-4898 (2003).
60. H. L. Chiang, C. P. Huang, and P. C. Chiang, “ The surface characteristics
of activated carbon as affected by ozone and alkaline treatment,”
Chemosphere, 47, pp.257-265 (2002).
61. C.He, S.Song, J.Liu, V.Maragou, and P.Tsiakaras,” KOH-activated multi-walled carbon nanotubes as platinum supports for oxygen reduction reaction,” Journal of Power Sources, 195, pp.7409–7414 (2010).
62. 陳建宏,「改質多層奈米碳管儲氫之研究」,國立雲林科技大學工程科技研究所博士班畢業論文,2008。
63. R. Arasteh, M. Masoumi, A.M. Rashidi, L. Moradi, V. Samimi, and S.T. Mostafavi, “ Adsorption of 2-nitrophenol by multi-wall carbon nanotubes from aqueous solutions,” Applied Surface Science, 256, pp.4447–4455 (2010).
64. I. Bautista-Toledo, M.A. Ferro-Garcia, J. Rivera-Utrilla, C. Moreno-Cadtilla, and F.J. Vegas Fernandez, “Bisphenol A Removal from Water by Activated Carbon. Effects of Carbon Characteristics and Solution Chemistry,” Environmental Science Technology, 39, pp.6246-6250 (2005).