跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳伯宣
Bo-Syuan Chen
論文名稱: 以具阻尼顆粒機構實驗驗證多體動力學與離散元素法雙向耦合模擬技術
指導教授: 鐘雲吉
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 55
中文關鍵詞: 阻尼顆粒多體動力學離散元素法雙向耦合實驗驗證
外文關鍵詞: particle damping, multi-body dynamics, discrete element method, two-way coupling, experimental validation
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以活塞式顆粒阻尼實驗結果及具阻尼顆粒箱體彈簧系統實驗結果驗證多體動力學(Multi-body dynamic, MBD)與離散元素法(Discrete element method, DEM)雙向耦合模擬技術理論,並探討不同腔體大小與腔體配置對箱體振動行為的影響。研究結果顯示,本研究提出的雙向耦合模擬結果與對應實驗結果吻合良好。在活塞式顆粒阻尼實驗中,主要是由顆粒摩擦機制控制系統的能量消散。具顆粒體之箱體相較於未挖空箱體皆
    有明顯的減振效果,在改變腔體大小但固定系統質量相等情形下,減振效果依序為 1/4箱體、1/8 箱體與 1/16 箱體。在改變腔體配置但固定系統質量相等情形下,減振效果依序為具一層腔體、兩層腔體與三層腔體之箱體。加入顆粒體於箱體中,不會影響加速度的運動週期,但可降低加速度振幅,達到減振效果。


    The purpose of this study is to validate the two-way coupled simulation based on Multibody dynamics and Discrete element method using two sets of experiment, including particlebased thrust damper test and free vibration test of small devices with particle damper, dash-pot and spring. This study further investigates the effect of size and layout of particle damper on dynamic characteristics. Results show that the coupled MBD-DEM simulations agree well with the corresponding experiments. In the loading scenario of particle-based thrust damper, friction mainly controls the energy dissipation of the mechanical system. It is evident that particle damper significantly reduces vibration. Under the same mass but with different sizes of particle damper, the attenuation effect follows the sequence: 1/4 box>1/8 box>1/16 box. Under the same mass but with different layouts of particle damper, the attenuation effect follows the sequence: one-chamber>double chamber>triple chamber. Adding the damping particles to the system does not affect the period of the acceleration, but reduces the acceleration amplitude.

    摘要 i Abstract ii 附表目錄 v 附圖目錄 vi 第一章 緒論 1 1-1 文獻回顧 1 1-2 研究背景與動機 4 1-3 研究架構 5 第二章 數學模型建立與實驗設置 6 2-1 數學模型建立 6 2-2 離散元素法 6 2-2-1 牛頓運動方程式 7 2-2-2 接觸力模型 8 2-2-3 時間步的選取 9 2-2-4 多體動力學與離散元素法雙向耦合模型求解流程 10 2-3 實驗裝置 10 2-3-1 實驗設備 10 2-3-2 量測技術 11 2-3-3 實驗步驟 12 2-3-4 阻尼係數量測 12 第三章 結果與討論 14 3-1 以活塞式顆粒阻尼實驗驗證多體動力學與離散元素法耦合技術(Coupled MBD-DEM) 14 3-2 以具阻尼顆粒箱體彈簧系統實驗驗證多體動力學與離散元素法耦合技術(Coupled MBD-DEM) 15 3-3 具阻尼顆粒箱體振動行為之探討 17 3-3-1腔體大小對具阻尼顆粒箱體振動行為之影響 17 3-3-2腔體配置對具阻尼顆粒箱體振動行為之影響 18 第四章 結論 19 參考文獻 20

    [1] H.V. Panossian, Structural damping enhancement via non-obstructive particle damping technique, J. Vib. Acoust. 114 (1992) 101-105.
    [2] T. Chen, K. Mao, X. Huang, M.Y. Wang, Dissipation mechanisms of non-obstructive particle damping using discrete element method, Smart. Structure. Mat. 4331 (2001) 294-301.
    [3] K. Mao, M.Y. Wang, Z. Xu, T. Chen, Simulation and Characterization of Particle Damping
    in Transient Vibrations, J. Vib. Acoust. (2004) 126.
    [4] M.R. Duncan, C.R. Wassgren, C.M. Krosgrill, The damping performance of a single particle impact damper, J. Sound. Vib. 286 (2005) 123-144.
    [5] W. Liu, G.R. Tomlinson, J.A. Rongong, The dynamic characterization of disk geometry
    particle dampers, J. Sound. Vib. 280 (2005) 849-861.
    [6] Z. Lu, X. Lu, H. Jiang, S. F.Masri, Discrete element method simulation and experimental validation of particle damper system, Int. J. Comp. Aid. Eng. S. 31 (2014) 4.
    [7] W.Q. Xiao, Y.X. Huang, H. Jiang, H. Lin, J.N. Li, Energy dissipation mechanism and experiment of particle dampers for gear transmission under Centrifugal Loads, Particuology. 27 (2016) 40-50.
    [8] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique. (1979) 47-65.
    [9] C. O’Sullivan, J.D. Bray, Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Computation. 21 (2004) 278-303.
    [10] K. Mao, M.Y . Wang, Z. Xu, T. Chen, DEM simulation of particle damping, Powder Technol. 142 (2004) 154-165.
    [11] C.X. Wong, M.C. Daniel, J.A. Rongong, Energy dissipation prediction of particle dampers, J. Sound. Vib. 319 (2009) 91-118.
    [12] Z. Lu, S.F. Masri, X. Lu, Parametric studies of the performance of particle dampers under harmonic excitation, Struct. Control. Hlth. 18 (2009) 79-98.
    [13] MSC.Software: Using ADAMS/Solver. Mechanical Dynamics,Inc., Ann Arbor, Michigan, 1997.
    [14] J.B. McConville, J.F. McGrath, Introduction to ADAMS Theory. Mechanical Dynamics Inc, Michigan, 1998.
    [15] A.A. Shabana, Dynamics of Multibody Systems, 3rd edn.Cambridge University Press, Cambridge, 2005.
    [16] W. Schiehlen, Computational dynamics: theory and applications of multibody systems, Eur. J. Mech. A/Solids. 25(4) (2006) 566–594.
    [17] P. Flores, J. Ambrósio, J.C.P. Claro, H.M. Lankarani, Kinematics and Dynamics of Multibody Systems with Imperfect Joints, Springer. (2008).
    [18] L.X. Xu, An approach for calculating the dynamic load of deep groove ball bearing joints in planarmultibody systems, Nonlinear Dyn. 70 (2012) 2145-2161.
    [19] M. Langerholc, M. Cesnik, J. Slavic, M. Boltear, Experimental validation of a complex, large scale, rigid-body mechanism, Eng. Struct. 36 (2012) 220-227.
    [20] X.M. Bai, B. Shah, L.M. Keer, Q.J. Wang, R.Q. Snurr, Particle dynamics simulations of piston-based paricle damper, Powder Technol. 189 (2009) 115-125.
    [21] Z. Lu, X. Lu, S.F. Masri, Studies of the performance of particle dampers under dynamic loads, J. Sound. Vib. 329 (2010) 5415-5433.
    [22] D.Q. Wang, C.J. Wu and R.C. Yang, Free vibration of the damping beam using co simulation method based on the MFT, Int. J. Acoust. Vib. 20 (2015) 251-257.
    [23] X. Lei and C.J. Wu, Non-obstructive particle damping using principles of gas-solid flows, J. Mech. Sci. Technol. 31 (2017) 1057-1065.
    [24] S. Lommen, G. Lodewijks, D.L. Schott, Co-simulation framework of discrete element method and multibody dynamics models, Eng. Computation. 35 (2018) 1481-1499.
    [25] Y.C. Chung, S.S. Hsiau, H.H. Liao, J.Y. Ooi, An improved PTV technique to evaluate the velocity field of non-spherical particles, Powder technol. 202 (2010) 151-161.
    [26]線性滑軌_TC,銀泰科技股份有限公司,第 B16 頁,2009。
    [27] Singiresu s. Rao, Mechanical vibrations fifth edition in si units. 2011, pp. 164-166.
    [28] Y.C. Chung, C.W. Wu, C.Y. Kuo, S.S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Appl. Math. Model. 74 (2019) 540-568.

    QR CODE
    :::