| 研究生: |
薛培函 Pei-han Hsueh |
|---|---|
| 論文名稱: |
考慮近斷層效應之Y型隅撐構架耐震行為研究 |
| 指導教授: | 許協隆 |
| 口試委員: | |
| 學位類別: |
博士 Doctor |
| 系所名稱: |
工學院 - 土木工程學系 Department of Civil Engineering |
| 論文出版年: | 2018 |
| 畢業學年度: | 106 |
| 語文別: | 中文 |
| 論文頁數: | 196 |
| 中文關鍵詞: | Y型隅撐構架 、消能鋼板 、近斷層地震 、耐震設計 |
| 外文關鍵詞: | Y-braced frames, Energy dissipation plates, Near-Fault earthquakes, Seismic design |
| 相關次數: | 點閱:17 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
由於近斷層地震通常具有較長週期的脈衝震波,對結構物之危害往往比同規模遠域地震大,尤其近十年來國內外幾個知名大地震發生後,近斷層效應影響更是受到重視,故本研究針對具摩擦及挫屈控制機制之Y型隅撐構架,搭配不同尺寸之切削鋼板做為消能裝置,分別使用近斷層歷時進行實驗,以界定其在近斷層耐震設計之應用性及可行性,並比較其與一般地震加載歷時之結構行為。
由隅撐構架結果實驗結果得知,Y型隅撐構架於近斷層初始之衝擊下,仍可使整體構架於1.8%之內皆保持彈性階段。此外,若搭配適當之消能隅撐,可於消能構件挫屈前,降低梁柱接頭受力,有效延後梁端降伏情形。而整體構架總能量消散方面,仍可保有傳統抗彎構架之1.4~1.6倍,初始構架勁度也較抗彎構架高約4.2倍,顯示此設計於一般地震加載或近斷層加載歷時,皆可有效發揮其效益。對於結構設計,具有相當之可行性。
Near-Fault earthquakes possess long-period pulse and momentary input energy, thus usually causing severe damage to structures. This study is focused on the performance evaluation of the Y-Shaped knee braced frames with various friction and buckling mechanisms. Responses of framed structures under SAC Near-Fault protocol were compared with those of frames subject to SAC loading protocol to validate the effectiveness of the proposed Y-braced frame designs.
According to the experimental results, the Y-braced frames could maintain the elastic stage within 1.8% drift ratio under the initial impact of the Near-Fault. It is also shown that the force of the beam-column joints was effectively reduced and the occurrence of plastic hinges was also delayed. Comparisons of test results validated the applicability of Y-braced frames to the seismic designs.
1. Krawinkler, H. (1978), “Shear in Beam-Column Joint in Seismic Design of Steel Frames”, Engineering Journal, AISC, Vol.15, No.3, pp.82-91.
2. Tsai, K.C. and Popov, E.P. (1990), “Seismic Panel Zone on Elastic Story Drift in Steel Moment Resistance Frames”, Journal of Structural Engineering-ASCE, Vol.116, No.12, pp. 3285-3301.
3. Taranath, B.S. (1988), “Structural Analysis & Design of Tall Building”,McGraw-Hill, New York.
4. Bruneau, M., Uang C.M. and Whittaker A. (1998),”Ductile Design of Steel Structures”, McGraw-Hill Company, New York.
5. Civjan, S.A., Engelhardt, M.D. and Gross J.L. (2000),“Retrofit of Pre-Northridge Moment-Resisting Connections, Journal of Structural Engineering-ASCE, Vol. 126, Iss. 4, pp. 445-452.
6. Kim, T., Whittaker, A. S., Gilani, A. S. J., Bertero, V. V. and Takhirov, S. M. (2002), “Cover-Plate and Flange-Plate Steel Moment-Resisting Connections”, Journal of Structural Engineering-ASCE, Vol.128, Iss.4, pp.474-482.
7. Yu, Q. S., Uang, C. M., and Gross, J,(2000),“Seismic Rehabilitation Design of Steel Moment Connection with Welded Haunch”, Journal of Structural Engineering-ASCE, Vol. 126,Iss. 1, pp. 69-78.
8. Plumier, A., Baus, R., Pepin, R., and Schliech, J., (1992). “Anti Seismic Steel Structure Work”. U.S. Patent, No5148642.
9. Chen, S.J. and Tu, C.T.(2004), Experimental Study of Jumbo Size Reduced Beam Section Connections Using High-Strength Steel”, Journal of Structural Engineering-ASCE, Vol.130, iss.4, pp. 582-587.
10. Azizinamini, A. and Radziminski, J.B.(1989), “Static and cyclic performance of semirigid steel beam-to-column connections.” Journal of Structural Engineering, 115(12), 2979-2999.
11. Hsu, H.L. and Jean, S.Y.(2003), “Improving Seismic Design Efficiency of Petrochemical Facilities, Practice Periodical on Structural Design and Construction, Vol. 8, No. 2, pp. 107-117.
12. 彭志鴻(2009),應用不同尺度於稱之鋼結構耐震性能研究,國立中央大學土木工程學系,碩士論文。
13. 周誌桓(2009),隅撐鋼結構耐震行能研究,國立中央大學土木工程學系,碩士論文。
14. 李宗儔(2010),具挫屈控制機制之隅撐構架耐震行為研究,國立中央大學土木工程學系,碩士論文。
15. 江承駿(2014),具摩擦消能機制之Y型隅撐鋼結構耐震性能研究,國立中央大學土木工程學系,碩士論文。
16. 余子豪(2016),具摩擦及挫屈控制機制之Y型隅撐構架耐震行為研究,國立中央大學土木工程學系,碩士論文。
17. Bertero, V.V., Mahin, S.A. and Herrera, R.A. (1978). “Aseismic design implications of San Fernando earthquake records’, Earthquake Engneering and Structural Dynamics. 6(1), 1978, pp.31-42.
18. Anderson, J.C. and Bertero, V.V. (1987). “Uncertainties ineastablishing design earthquake”, Journal of Structural Engineering, ASCE 113(8),1987, pp.1709-1724.
19. Krawinkler, H. (2009).” Loading Histories For Cyclic Tests in Support of Performance Assessment of Structural Components”, Dept of Civil and Environmental, Stanford University; Stanford, CA, pp.1-6.
20. Hall, J. F., Heaton, T. H., Halling, M. W. and Wald, D. J., (1995). “Near-source Ground Motion and Its Effects on Flexible Buildings,”Earthquake Spectra, Vol. 2, 1995.
21. Ronnie Kamai and Norman Abrahason, (2015). "Are Near-Fault Fling Effects Captured in the NEW NGA West2 Ground Motion Models." Earthquake Spectra, Vol.31, No.3, pp1629-1645.
22. Jack W. Baker,(2007)."Quantitative Classification of Near-Fault Ground Motions Using Wavelet Analysis." Bulletin of the Seismological Society of America, Vol.97, No.5, pp.1486-1501.
23. 羅俊雄、溫國樑(2000),考慮區域近斷層效應及均布危害度之設計地震力需求,內政部建築研究所,第4章。
24. Mourad Attalla, Paret, T. and Freeman, S., (1998). “Near-source behavior of buildings under pulse-type earthquakes.” In 6th U.S. National Conference on Earthquake Engineering, 1998.
25. 內政部營建署(2006),鋼構造建築物鋼結構設計技術規範。
26. AISC, Manual of Steel Construction Allowable Stress Design, 9th Edition, American Institute of Steel Construction, Chicago III.
27. 內政部營建署(2011),建築物耐震設計規範及解說,台北。
28. 內政部營建署(2007),鋼構造建築物鋼結構施工規範。
29. Chajes, A.(1974), Principles of structural stability theory,Prentice-Hall Englewood Cliffs, NJ.