跳到主要內容

簡易檢索 / 詳目顯示

研究生: 徐逸鴻
Yi-Hung Hsu
論文名稱: 波導型平面聚光器於太陽能系統之容忍角增益研究
Improve acceptance angle of planar waveguide concentrator with solar system
指導教授: 韋安琪
An-Chi Wei
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 79
中文關鍵詞: 容忍角透鏡陣列
外文關鍵詞: V-groove
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文設計一聚光系統,其波導板底部為設計之 V 型構造,並於上方搭載透鏡陣列,並將太陽能電池裝置於波導板左右兩側,藉由透鏡將入射光會聚至底部後,再由底部 V 型溝槽鍍上鋁膜後反射至太陽能電池,利用光伏效應將光能轉換為電能。利用光學模擬軟體 LightTools 進行設計模擬,最初進行模擬時,僅計算模型幾何之光學效率為 87.5%,系統容忍角為±13°。接著,考量各項條件情況下(穿透率、反射率、太陽光譜、太陽能電池頻譜等),其光學效率為 37.1%、系統容忍角為±11°。接著,將所設計之模型以CNC製程製作出成品並進行加工後,利用太陽能電池分析儀及
    太陽光模擬器進行光學效率之實際量測,測得實際模型之光學效率為 22.6%、系統容忍角為±15°。最後,將實驗結果與模擬結果比較分析,探討效率損失之原因。


    This thesis presents the design of a concentrator system, which features a V-grooves structure at the bottom of the waveguide. An lens array is installed above it, and solar cell are placed on the left and right sides of the waveguide. The incident light is focused at the bottom through the lenses, and then reflected onto the solar cell by aluminum coating on the V-grooves at the bottom. The light energy is converted into electrical energy using the photovoltaic effect.
    The design was simulated using the optical simulation software LightTools. Firstly, only calculate the geometry of the design. Simulation results show that its average optical efficiency achieve 87.5%, with a system acceptance angle of ±13°. Then, consider various conditions such as transmittance, reflectance, solar spectrum, and solar cell spectrum. The average optical efficiency achieve 37.1%, with a system acceptance angle of ±11°. Next, the designed model was fabricated using CNC machining and processed accordingly. The reality optical efficiency of the fabricated model was measured using a Solar Module Analyzer and Solar Simulator. The measured average optical efficiency of the fabricated model decrease to 22.6%, with a system acceptance angle of ±15°.
    Finally, compare the measurement results with simulation results and analyze them. Investigate the reason of the efficiency loss.

    摘要 i Abstract ii 目錄 iii 圖目錄 v 表目錄 vii 第一章、緒論 1 1-1 研究背景 1 1-2 文獻回顧 3 1-2-1 折射式 4 1-2-2 反射式 4 1-2-3 混合型 6 1-2-4 螢光型 8 1-2-5 波導型 8 1-3 研究動機與目的 11 1-4 研究方法與流程 12 1-5 論文架構 13 第二章、基礎理論與原理 14 2-1 幾何光學理論 14 (1) 光線直線傳播 14 (2) 反射定律 14 (3) 折射定律 15 2-2 非成像光學(Non-imaging optics) 17 2-3 菲涅爾損失 18 2-4 造鏡者公式(Lens maker’s equation) 19 2-5 非球面透鏡 20 2-6 太陽能電池 21 2-7 線性菲涅爾反射式太陽聚光器 24 2-8 小結 26 第三章、設計與模擬 27 3-1 設計理念 27 3-2 設計流程 30 3-3 非球面透鏡設計 31 3-4 底部V型溝槽斜面設計 32 3-4-1 直接反射型 33 3-4-2 二次反射型 35 3-5 聚光系統之光學模擬 39 3-6 聚光系統之容忍角分析 42 3-7 小結 44 第四章、實驗方法與結果討論 45 4-1 實驗設備 45 4-2 實驗架設 49 4-2-1 模型對位 49 4-2-2 折射液選用 51 4-2-3 太陽光模擬器 52 4-3 實驗結果 53 4-3-1 太陽能電池量測 53 4-3-2 側聚光系統實驗量測 56 4-4 結果與討論 59 4-4-1 考慮實際影響之因素 59 4-4-2 誤差分析 62 4-4-3 容忍角誤差 65 4-5 小結 65 第五章、結論與未來展望 67 5-1 結論 67 5-2 未來展望 68 參考文獻 69

    [1] "發電量佔比." 台灣電力公司. https://www.taipower.com.tw/tc/Chart.aspx?mid=194
    [2] M. A. Green, "Photovoltaic principles," Physica E: Low-dimensional Systems and Nanostructures, vol. 14, no. 1-2, pp. 11-17, 2002.
    [3] H. Müller-Steinhagen and F. Trieb, "Concentrating solar power," A review of the technology. Ingenia Inform QR Acad Eng, vol. 18, pp. 43-50, 2004.
    [4] S. N. Bureau. "Unveiling the Solar Water Heating System Technology." SAUR ENERGY. https://www.saurenergy.com/solar-energy-blog/unveiling-the-solar-water-heating-system-technology
    [5] "CIS Tower." https://en.wikipedia.org/wiki/CIS_Tower
    [6] H. Apostoleris, M. Stefancich, and M. Chiesa, "Tracking-integrated systems for concentrating photovoltaics," Nature Energy, vol. 1, no. 4, pp. 1-8, 2016.
    [7] P. Xie, H. Lin, Y. Liu, and B. Li, "Total internal reflection-based planar waveguide solar concentrator with symmetric air prisms as couplers," Optics express, vol. 22, no. 106, pp. A1389-A1398, 2014.
    [8] D. Freier, R. Ramirez-Iniguez, T. Jafry, F. Muhammad-Sukki, and C. Gamio, "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and sustainable energy reviews, vol. 90, pp. 957-968, 2018.
    [9] P. Benítez et al., "High performance Fresnel-based photovoltaic concentrator," Optics express, vol. 18, no. 101, pp. A25-A40, 2010.
    [10] W. Xie, Y. Dai, R. Wang, and K. Sumathy, "Concentrated solar energy applications using Fresnel lenses: A review," Renewable and Sustainable Energy Reviews, vol. 15, no. 6, pp. 2588-2606, 2011.
    [11] R. Winston and H. Hinterberger, "Principles of cylindrical concentrators for solar energy," Solar Energy, vol. 17, no. 4, pp. 255-258, 1975.
    [12] K.-K. Chong et al., "Dense-array concentrator photovoltaic system using non-imaging dish concentrator and crossed compound parabolic concentrator," in AIP conference proceedings, 2015, vol. 1657, no. 1: AIP Publishing.
    [13] X. Ning, R. Winston, and J. O’Gallagher, "Dielectric totally internally reflecting concentrators," Applied optics, vol. 26, no. 2, pp. 300-305, 1987.
    [14] J. C. Miñano, J. C. González, and P. Benítez, "A high-gain, compact, nonimaging concentrator: RXI," Applied Optics, vol. 34, no. 34, pp. 7850-7856, 1995.
    [15] L. H. Slooff et al., "A luminescent solar concentrator with 7.1% power conversion efficiency," physica status solidi (RRL)–Rapid Research Letters, vol. 2, no. 6, pp. 257-259, 2008.
    [16] J. H. Karp, E. J. Tremblay, and J. E. Ford, "Planar micro-optic solar concentrator," Optics express, vol. 18, no. 2, pp. 1122-1133, 2010.
    [17] S.-Y. Hsiao, "側聚光型太陽能電池系統之容忍角增益研究," National Central University, 2017.
    [18] E. Hecht, Optics 4ed. Addison-Wesley, 2001.
    [19] "Sagitta (optics)." https://en.wikipedia.org/wiki/Sagitta_(optics)
    [20] "Aspherical Lens." https://www.laserfocusworld.com/directory/finished-optics-coatings-components/lenses/blog/14223236/lacroix-precision-optics-what-is-an-aspherical-lens
    [21] "圓錐係數對應之圖形." https://kknews.cc/zh-tw/news/v6q6o2a.html
    [22] 李朱育、李敏鴻、李勝偉、柯文政、段生振、陳念波, 圖解:光電半導體元件. 五南出版.
    [23] B. Negi, T. Kandpal, and S. Mathur, "Designs and performance characteristics of a linear Fresnel reflector solar concentrator with a flat vertical absorber," Solar & wind technology, vol. 7, no. 4, pp. 379-392, 1990.
    [24] "AM1.5G spectrum." https://www2.pvlighthouse.com.au/resources/optics/spectrum%20library/spectrum%20library.aspx
    [25] "PEC-L11 Specifications." http://www.optical-relation.com/PEC-L11%20Specifications%20PDF.pdf
    [26] "Solar simulator catalog." http://hologenix.com/sites/default/files/PDFs/SolarSimulatorCatalog.pdf
    [27] "High sensitivity thermal laser sensors." [Online]. Available: https://www.ophiropt.com/laser--measurement/cn/laser-power-energy-meters/products/Laser-Thermal-Power-Sensors/High-Sensitivity-Thermal-Laser-Sensors/3A-P-FS-12.
    [28] "PV Analyzer Specifications." https://www.prova.com.tw/img/download/200A-Data%20Sheet-2015.pdf
    [29] "refractive index liquids." https://www.cargille.com/refractive-index-liquids/

    QR CODE
    :::