跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鐘同元
Tong-Yuan Zhong
論文名稱: 多重共振聲學超穎材料與聲語型抽動妥瑞氏症患者吸音口罩應用
Acoustic metamaterials with multiple resonances as sound-absorbing mask of Tourette’s patients
指導教授: 傅尹坤
Yiin-Kuen Fuh
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 能源工程研究所
Graduate Institute of Energy Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 72
中文關鍵詞: 妥瑞症聲語型聲學聲學新穎材料COMSOL模擬
外文關鍵詞: Tourette syndrome, acoustic metamaterial, COMSOL simulation
相關次數: 點閱:15下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 妥瑞氏症是一個遺傳性神經生理學障礙和會在孩提時代就發病,而妥瑞氏症的特徵在於很多身體的抽動和會有聲音的抽動。0.4%~3.8%之間的孩子會在5歲~8歲可能有妥瑞氏症,抽動行為普遍發生在已經上學年紀的兒童和比較常見的抽動行為像是眨眼、咳嗽、清喉嚨和顏部的扭曲移動。本篇主要著重在第一個部分為3D掃描資料和3D製造過程結合用於客製化口罩跟第二個部分為跟亨龍公司所合作製作的通用量產型口罩。客製化口罩跟量產型口罩都搭配不同性質,像是口罩材質,振動板種類跟厚度,有無不織布等,而其中最特別的是增加聲學聲學新穎材料(acoustic metamaterials)用於量產型口罩,我們利用聲學新穎材料得到一個有效的聲音抑制能力。另外輔以COMSOL模擬振動板,得到不同厚度的振動板跟不同的模態所對應的位移變化情形跟共振特徵頻率。我們的客製化口罩跟量產型口罩的聲音抑制表現都優於無口罩,而最後的目標是成功完成設計和發展一個低耗費、阻尼振動版,跟聲學新穎材料結構用於妥瑞氏症患者上。


    Tourette syndrome is an inherited neurophysiologic disorder with onset in childhood, characterized by multiple physical (motor) tics and at least one vocal (phonic) tic. Between 0.4% and 3.8% of children ages 5 to 18 may have Tourette's; the prevalence of other tic disorders in school-age children is higher, with the more common tics of eye blinking, coughing, throat clearing, sniffing, and facial movements. This paper is mainly focused the first part on a novel multilayer vibrating plate design in conjunction with the 3D scanned data/3D printed fabrication process for the customized mask and second part on a common mass production mask is cooperation with Hanlong Industrial Cooperation. Customized mask and mass production mask are with different nature. Such as mask materials, vibrating plates and thickness , with and without non-woven, etc. One of the most special is adding acoustic metamaterials for mass production mask, we use acoustic metamaterials to get an effective sound suppression capability. In addition,supplemented by COMSOL simulation of vibrating plate, getting the vibrating plate with different thickness and different mode are correspond displacement with resonance characteristic frequency. The sound suppression performance of customized mask is shown to be superior to that of no mask . Therefore, final goal is successfully accomplished to design and develop an alternative low-cost, damped vibrating plate and acoustic metamaterials structure for the patients of Tourette's syndrome.

    目錄 摘要 ............................................................................................................................... II Abstract ........................................................................................................................III 致謝 ............................................................................................................................. IV 目錄 ...............................................................................................................................V 圖目錄 .......................................................................................................................VIII 表目錄 ...........................................................................................................................X 第一章 緒論 ..................................................................................................................1 1.1前言 ...............................................................................................................1 1.2研究動機與目的 ............................................................................................2 1.3論文架構 ........................................................................................................3 第二章 基礎理論與文獻回顧 ......................................................................................4 2.1響度或稱聲強 ...........................................................................................4 2.2分貝 ...........................................................................................................4 2.3探討聲壓的吸音機制 ...............................................................................4 2.4音場傳播原理 ...........................................................................................5 2.5不同類型的吸音材料 ...............................................................................6 2.6聲學新穎材料 ...........................................................................................7 第三章 口罩的設計 ......................................................................................................9 3.1設計不同類型的口罩結構 ............................................................................9 VI 3.3.1客製化口罩建構過程..................................................................10 3.2客製化口罩1 ...............................................................................................11 3.3客製化口罩2 ...............................................................................................13 3.4量產型口罩1 ...............................................................................................14 3.5量產型口罩2 ...............................................................................................16 第四章 數值模擬 ........................................................................................................18 4.1針對客製化口罩1,2和量產型口罩1裡面的振動板做數值模擬 ........18 第五章 實驗量測與結果 ............................................................................................29 5.1實驗設備 ......................................................................................................29 5.2實驗材料 ......................................................................................................34 5.3實驗流程 ......................................................................................................37 5.4性質搭配圖 ..................................................................................................38 5.5人聲實測實驗分析 ......................................................................................39 5.5.1客製化口罩1(PLA) ......................................................................40 5.5.2客製化口罩2(PLA) ......................................................................43 5.5.3量產型口罩1(PLA跟TPE) .........................................................44 5.5.4量產型口罩2(PU塑膠) ................................................................45 5.6簡單音箱實測實驗分析 ..............................................................................47 5.6.1客製化口罩1(PLA) ......................................................................48 5.6.2量產型口罩2(PU塑膠) ................................................................49 5.6.3聲音的傳輸損失(T.L) ...................................................................50 第六章 結論 ................................................................................................................52 6.1 COMSOL模擬結果 ..............................................................................52 VII 6.2人聲實測結果 ..............................................................................................52 6.3音箱實測結果 ..............................................................................................54 參考文獻 ......................................................................................................................55

    [1] 白明憲,“工程聲學” ,全華圖書股份有限公司,2012年3月,pp.1-5-pp.1-12, pp.1-15-pp.1-16,pp.1-41-pp.1.43
    [2] http://www.freudenberg-nw.com/en/solutions/Pages/SoundTex.aspx.
    [3] Jayaraman, K. A., 2005, “Acoustical TPEorptive properties of Nonwovens,” North Carolina State University, M.S. thesis
    [4] Kücük, M. and Korkmaz, Y., 2012, “The effect of physical parameters on sound TPEorption properties of natural fiber mixed nonwoven composites,” Textil. Res. J., 82, pp.2043-2053.
    [5] Na, Y., Agnhage, T., and Cho, G., 2012, “Sound TPEorption of Multiple Layers of Nanofiber Webs and the Comparison of Measuring Methods for Sound TPEorption Coefficients,” Fiber. Polym., Vol. 13, No.13, pp.1348-1352
    [6] Na, Y., Lancaster J., Casali, J., and Cho, G., 2007, “Sound TPEorption Coefficients of Micro-fiber Fabrics by Reverberation Room Method,” Textil. Res. J., 77, pp.330-335.
    [7] Shoshani, Y. and Yakubov, Y., 1999, “A Model for Calculating the Noise TPEorption Capacity of Nonwoven Fiber Webs,” Textil. Res. J., 69, pp.519-526.
    [8] Manning, J. and Panneton, R., 2013, “Acoustical model for Shoddy-based fiber sound TPEorbers,” Textil. Res. J., 83, pp.1356-1370.
    [9] Du, Y., Yan, N. and Kortschot, M. T., 2014, “A simplified fabrication process for biofiber-reinforced polymer composites for automotive interior trim applications,” J. Mater. Sci., 49, pp. 2630-2639.
    56
    [10] Pegoretti, T. D. S., Mathieux, F., Evrard, D., Brissaud, D., and Arruda, J. R. D. F., 2014, “Use of recycled natural fibres in industrial products: A comparative LCA case study on acoustic components in the Brazilian automotive sector” Resour. Conserv. Recy., 84, 1. pp.1-14.
    [11] Jiang, S., Xu, Y., Zhang, H., White, C. B. and Yan, X., 2012, “Seven-hole hollow polyester fibers as reinforcement in sound TPEorption chlorinated polyethylene composites” Appl. Acoust., 73, pp.243-247.
    [12] Tadeu, A., António, J. and Mateus, D., 2004, “Sound insulation provided by single and double panel walls—a comparison of analytical solutions versus experimental results” Appl. Acoust., 65, pp.15-29.
    [13] X. L. Zhang and C. P. Liu, Applied Mechanics and Materials, 275, 1623(2013).
    [14] 白明憲,“工程聲學” ,全華圖書股份有限公司,2012年3月,pp.7-1-pp.7-18.
    [15] Jayaraman KA. Acoustical absorptive properties of nonwovens. North Carolina State University, M.S. thesis 2005.
    [16] Kücük M and Korkmaz Y. The effect of physical parameters on sound absorption properties of natural fiber mixed nonwoven composites. Textil Res J 2012;82: 2043-2053.
    [17] Na Y, Agnhage T, and Cho G .Sound absorption of multiple layers of nanofiber webs and the comparison of measuring methods for sound absorption coefficients. Fiber Polym 2012; 13:1348-1352.
    [18] Na Y, Lancaster J, Casali J, and Cho G. Sound absorption coefficients of micro-fiber fabrics by reverberation room method. Textil Res J 2007;77: 330-335.
    57
    [19] Shoshani Y and Yakubov Y .A model for calculating the noise absorption capacity of nonwoven fiber webs. Textil Res J 1999;69:519-526.
    [20] Manning J and Panneton R. Acoustical model for shoddy-based fiber sound absorbers. Textil Res J 2013;83:1356-1370.
    [21] Du Y, Yan N, and Kortschot MT.A simplified fabrication process for biofiber-reinforced polymer composites for automotive interior trim applications. J Mater Sci 2014;49: 2630-2639.
    [22] Pegoretti TDS, Mathieux F, Evrard D, Brissaud D, and Arruda JRDF.Use of recycled natural fibres in industrial products: A comparative LCA case study on acoustic components in the brazilian automotive sector. Resour Conserv Recy 2014;84:1-14.
    [23] Or KH , Putra A , and Selamat MZ.Oil palm empty fruit bunch fibres as sustainable acoustic absorber. Appl Acoust. 2017;119:9-16.
    [24] Bujoreanu C, Nedeff F, Benchea M, and Agop M.Experimental and theoretical considerations on sound absorption performance of waste materials including the effect of backing plates. Appl Acoust 2017;119:88-93.
    [25] Sun L. Experimental investigation of vibration damper composed of acoustic metamaterials. Appl Acoust 2017;119:101-107.
    [26]陳奕宏,「含質量框架之薄膜超穎材料聲音穿透分析」,國立成功大學論文,2014年 [27] C. J. Naify, C. M. Chang, G. McKnight, and S. Nutt. (2010). Transmission loss and dynamic response of membrane-type locally resonant acoustic metamaterials, J. Appl. Phys. 108,
    58
    114905.
    [28] J. Mei, G. Ma, M. Yang, Z. Yang, W. Wen, and P. Sheng. Dark acoustic metamaterials as super absorbers for low-frequency sound, Nature Commuications 2012;3:756
    [29] Ma G, Yang M , Xiao S , Yang Z , Sheng P. Acoustic metasurface with hybrid resonances. Nature Materials 2014;13:873-878 [30] Y. Zhang, J. wen, H. Zhao, D. Yu, L. Cai, and X. Wen. (2013). “Sound insulation property of membrane-type acoustic metamaterials carrying different masses at adjacent cells, J. Appl. Phys. 114, 063515.
    [31] http://www.commonhealth.com.tw/article/article.action?nid=68238&page=2
    [32] http://myplastics.blogspot.tw/2010/04/thermoplastic-elastomer.html
    [33] https://goo.gl/M1qKnP

    QR CODE
    :::