跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃晴澤
Ching-tse Huang
論文名稱: 以非熱電漿結合吸附劑處理C3F8之研究
Removal of C3F8 via the Combination of Nonthermal Plasma and Adsoption
指導教授: 張木彬
Moo Been Chang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 環境工程研究所
Graduate Institute of Environmental Engineering
畢業學年度: 97
語文別: 中文
論文頁數: 90
中文關鍵詞: 非熱電漿C3F8吸附劑介電質放電停留時間
外文關鍵詞: removal efficiency., PFCs, plasma, adsorption, adsorbent
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • C3F8近年來已逐漸取代CF4及C2F6成為高科技產業CVD腔體清洗之主要清洗氣體,其具高化學穩定性及強紅外線吸收能力,乃京都議定書明訂管制之溫室效應氣體之ㄧ。目前全氟化物主流處理技術為燃燒法和觸媒法,兩者之缺點為無污染物排放期間仍須維持相當溫度,耗能較高並有發生工安意外之虞。非熱電漿技術具快速啟動且無須維持高溫等特性,為極具應用前景之新興技術,其技術瓶頸為污染物去除之能量效率和產物選擇性尚有改善空間。如整合吸附劑物理吸附作用延長污染物停留時間、增加污染物濃度與非熱電漿於室溫即可啟動並迅速反應等特性,可同時改善污染物去除之能量效率及產物選擇性。本研究利用吸附劑結合介電質放電(DBD)處理C3F8,藉由吸附劑之物理吸附延長污染物停留時間,探討吸附劑之吸附效能、電漿處理對吸附劑之影響、吸附劑於電漿放電中對去除率及產物選擇性之影響。研究結果顯示,以吸附效果而言,球狀活性碳為最佳,推測原因為吸附劑表面之含氧官能基會對C3F8吸附效能造成影響;吸附劑經放電處理後,造成BET比表面積下降且使平均孔洞尺寸上升,而表面含氧官能基數量則有所增加。於本研究中,C3F8之轉化率隨著氧氣含量增加而提昇,但過量之氧氣將不利於轉化C3F8;在相同比能量密度下,吸附劑置入於電漿系統可改善其去除效率及產物選擇性,推論為吸附劑可延長C3F8之停留時間,可增加電子與C3F8之碰撞機率。本研究證實吸附劑置入有助於非熱電漿技術去除C3F8,深具發展潛力。


    Perfluorinated compounds (PFCs) are widely used in semiconductor industry for chemical vapor deposition (CVD) and dry etching. PFCs have strong apacities on infrared rays absorption, they will aggravate global warming once emitted into the atmosphere. Among the diverse strategies for PFCs removal, the abatement techniques is still the most available one. Combustion and catalytic oxidation are commonly used approaches for reducing PFC emissions. However, relatively high fuel cost and potential poisoning of catalyst limit their further application. This study investigates the effectiveness of plasma combined with adsorbent for C3F8 removal. The experimental results indicate Bead-shape activated carbon has the best adsorption capacity, the reason supposed to be the oxygen functional groups at adsorbent surface would affect the adsorption capacity of C3F8. Adsorbent after plasma treatment will decrease BET surface area and increase average pore diameter, and the amount of oxygen functional groups at surface increase as well. The removal efficiency of C3F8 increased with application of oxygen content. However, removal efficiency of C3F8 was found to decrease if more than 2% of oxygen was applied. The removal efficiency and product selectivity of C3F8 achieved with plasma combined with adsorbent were significantly higher than those without adsorbent of might result from the fact that adorbent can extend the retention time of C3F8. Experimental results indicate that plasma combined with adsorbent for C3F8 removal was technically feasible.

    摘要 I Abstract II 圖目錄 V 表目錄 VII 第一章 前言 1 1-1 研究緣起 1 1-2 研究內容 2 第二章 文獻回顧 3 2-1全氟化物之排放來源及其對環境之危害性 3 2-2 C3F8之物化特性與電漿反應 5 2-2-1 C3F8之物化特性 5 2-2-2 C3F8在電漿中之反應機制 7 2-3全氟化物現行減量方法 9 2-4電漿 15 2-4-1電漿生成原理 15 2-4-2電漿種類 16 2-4 氣相吸附及吸附劑 24 2-4-1氣相吸附原理 24 2-4-2吸附劑種類 27 2-4-3影響吸附之因子 29 2-4-4貫穿曲線 33 2-4-5等溫吸附曲線 34 第三章 實驗方法與設備 38 3-1系統介紹 38 3-2實驗所用吸附劑 40 3-3實驗設備 41 3-3-1氣體供應系統 41 3-3-2實驗參數控制系統 41 3-3-3吸附床反應器 42 3-3-4脫附設備 42 3-3-5介電質放電系統 42 3-3-6反應物及產物分析系統 44 3-4實驗方法 45 第四章 結果與討論 53 4-1挑選合適吸附劑 53 4-1-1 BET比表面積及孔洞尺寸 53 4-1-2 C3F8之吸附實驗 54 4-1-3小結 57 4-2 C3F8之吸附/脫附實驗 58 4-2-1進流濃度對吸附劑之飽和吸附量影響 58 4-2-2脫附/再生實驗 60 4-2-3小結 64 4-3電漿結合吸附劑實驗 64 4-3-1氧氣添加濃度對於C3F8去除效率的影響 64 4-3-2電漿結合吸附劑及非吸附劑之轉化效果 66 4-3-3最終產物鑑定 68 4-3-4 C3F8未經處理及經非熱電漿結合吸附劑之比較 72 4-3-5小結 73 4-4 電漿放電對吸附劑表面特性影響 74 4-4-1 BET比表面積及孔洞尺寸 74 4-4-2 SEM分析 75 4-4-3表面官能基 79 4-4-4 C3F8之吸附測試 81 4-4-5小結 83 第五章 結論與建議 84 5-1 結論 84 5-2 建議 85 參考文獻 86

    Adamson, A. W., “Physical Chemistry of Surface”, Wiley Interscience, New York, 1982.
    Bansal, R. C.; Donnet, J. B.; Stoeckli, F., “Active Carbon”, Marsel Dekker, 1988.
    Bibby, M. M. and Carter, G., “Ionization and Dissociation in Some Fluorocarbon
    Gases”, Transactions of the Faraday Society, Vol.59, 2455-2462, 1963.
    Boehm, H. P., “Some Aspects of the Surface Chemistry of Carbon Blacks and Other Carbons”, Carbon, Vol.32, 759-769, 1994.
    Bond, G.C., “Heterogeneous Catalysis: Principles and Applications”, Oxford,
    New York, 1987.
    Chang, J. S.; Kostov, K. G.; Urashima, K.; Yamamoto, T.; Okayasu, Y.; Kato, T.; Iwaizumi, T.; Yoshimura, K., “Removal of NF3 from Semiconductor-Process Flue Gases by Tandem Packed-bed Plasma and Adsorbent Hybrid Systems”, IEEE Transactions on Industry Applications, Vol.36, 1251-1259, 2000.
    Chang, C. L.; Lin, T. S., “Decomposition of Toluene and Acetone in Packed Dielectric Barrier Discharge Reactors”, Plasma Chemistry and Plasma Processing, Vol.25, 227-243, 2005.
    Chen, H.L.; Lee, H.M.; Chang, M.B., “Kinetic Modeling of the NF3 Decomposition via Dielectric Barrier Discharges in N2/NF3 Mixtures”, Plasma Processes & Polymers, Vol.3, 682-691, 2006.
    Chen, H. L.; Lee, H. M.; Chen, S. H.; Chang, M. B., “Review of Packed-Bed Plasma Reactor for Ozone Generation and Air Pollution Control,” Industrial & Engineering Chemistry Research, Vol.47, 2122-2130, 2008.
    Ding, H. X.; Zhu, A. M.; Yang, X. F.; Li, C. H.; Xu, Y., “Removal of Formaldehyde from Gas Streams via Packed-Bed Dielectric Barrier Discharge Plasmas”, Journal of Physics D: Applied Physics, Vol.38, 4160-4167, 2005.
    Do, D. D., “Adsorption Analysis: Equilibria and Kinetics”, Imperial College Press, London, 1998.
    Eliasson, B. and Kogelschatz, U., “Nonequilibrium Volume Plasma Chemical Processing”, IEEE Transactins on Plasma Science, Vol.19, 1063-1077, 1991.
    Farrell, J. C.; Manspeaker, C.; Luo, J., “Understanding Competitive Adsorption of Water and Trichloroethylene in a High-Silica Y Zeolite”, Microporous and Mesoporous Materials, Vol.59, 205-214, 2003.
    Heath, W. O.; Barlow, S. E.; Berqsman, T. M.; Lessor, D. L.; Orlando, T. M.; Peurrung, A. J.; Shah, R. R., “Development and Analysis of High-Energy Corona Processes for Air Purification”, PNL-SA-24432 Pacific Northwest Laboratory, 1994.
    Gollakota, S. V. and Chriswell, C. D., “Study of Adsorption Process Using Silicalite for Sulfur Dioxide Removal from Combustion Gases”, Industrial & Engineering Chemistry Research, Vol.27, 139-143, 1988.
    Ibuka, S., “Japan’s Use of ClF3”, A Partnership for PFC Emissions Reductions, Technical Program Present, Texas, 1998.
    Johnson, A. D.; Pierce, R. V.; Sistern, M. I.; Kencel, M.; Sward, R.; Winzig, H., “C2F6-Based Chamber Clean for Silane PECVD”, Semiconductor International, Vol.27, 57-64, 2004.
    Kang, W. S.; Park, J. M.; Kim, Y.; Hong, S. H., “Numerical Study on Influecnes of Barrier Arrangement on Dielectric Barrier Discharge Characteristics”, IEEE Transactions on Plasma Science, Vol.31, 504-510, 2003.
    Karecki, S. M.; Pruette, L. C.; Reif, R., “Reduction of Global Warming Emissions in a Dielectric Etch Application through Use of Iodofluorocarbon”, A Partnership for PFC Emissions Reductions, Technical Present, Texas, 1998.
    Kaushal, S.; Sharma, N.; Vajpayee, R. B., “Treatment of Acute Corneal Hydrops with Intracameral C3F8 in a Patient of Pellucid Marginal Degeneration with Keratoglobus”, Clinical and Experimental Ophthalmology, Vol.35, 697-699, 2007.
    Kim, Y.; Kim, K. T.; Cha, M. S.; Song, Y. H.; Kim, S. J., “CF4 Decompositions Using Streamer- and Glow-Mode in Dielectric Barrier Discharges”, IEEE Transactions on Plasma Science, Vol.33, 1041-1046 ,2005.
    Kogelschatz, U.; Eliasson, B.; Egli, W., “From Ozone Generators to Flat Television Screens: History and Future Potential of Dielectric-Barrier Discharges”, Pure and Applied Chemistary, Vol.71, 1819-1828, 1999.
    Laine, J.; Yunes, S., “Effect of the Preparation Method on the Pore-Size Distribution of Activated Carbon from Coconut Shell”, Carbon, Vol.30, 601-604, 1992.
    Lee, H. M.; Chen, S. H.; Chen, H. L., “Influence of Packing Materials on the Electric Fields of Packed-bed Dielectric Barrier Discharge Reactors”, Proceedings of 18th International Symposium on Plasma Chemistry, 2007.
    Lin, Y. C.; Bai, H. L.; Chang, C. L., “Applying Hexagonal Nanostructured Zeolite Particles for Acetone Removal”, Journal of Air & Waste Management Association, Vol.55, 834-840, 2005.
    McAdams, R., “Prospects for Non-thermal Atmospheric Plasmas for Pollution
    Abatement”, Journal of Physics D: Applied Physics, Vol.34, 2810-2821, 2001.
    Noutary, C. J., “Mass Spectrometric Study of the Photoionization of Some. Fluorocarbons and Trifluoromethyl Halides”, Journal of Research of the National. Bureau of Standards”, 72A, 479-485, 1968
    Poll, H. U. and Meichsner, J., “Partial Cross Sections for Dissociative Ionization
    of Fluorinated Compounds by Electron Impact”, Contributions on Plasma Physics., Vol.27, 359-372, 1987.
    Pruette, L. C.; Karecki, S. M.; Reif, R.,“Evaluation of Trifluoroacetic Anhydride as an Alternative Plasma Enhanced Chemical Vapor Deposition Chamber Clean Chemistry”, Journal of Vacuum Science & Technology, Vol.16, 1577-1581, 1998.
    Ramirez, D.; Sullivan, P. D.; Rood, M. J.; Hay, K. J., “Equilibrium Adosrption of phenol-, Tire-, and Coal-Derived Activated Carbon for Organic Vapors”,Journal of Environmental Engineering, Vol. 130, 231-241, 2004.
    Rosocha, L. A., “Nonthermal Plasma Applications to the Environmental: Gaseous Electronics and Power Conditioning”, IEEE Transcations on Plasma Science. Vol.33, 129-137, 2005.
    Seeley A.; Chandler P.; Cottle S.; Mawle P., “Effective PFC Gas Abatement in a Production Environment”, Semiconductor Fabtech-10th Edition, BOC Edwards Exhaust Management Systems, Nailsea, UK, 1997.
    Stenzel, M. H., “Remove Organics by Active Carbon Adsorption”, Chemical Engineering Progress, Vol.89, 36-43, 1993.
    Smith, J. M.; Van-Ness, H. C.; Abbott, M. M., “Introduction to Chemical Engineering Thermodynamics”, McGraw Hill, New York, 1996.
    Spyrou, S. M.; Sauers, I.; Christoproros, L. G., “Electron Attachment to the Perfluoroalkanes n-CNF2n+2 (n = 1-6) and i-C4F10”, Journal of Chemical Physics, Vol.78, 7200-7216, 1983.
    Suzuki, M., “Adsorption Engineering”, Kodansha, Tokyo, 1990.
    Takaki, K.; Chang, J. S.; Kostov, K. G., “Atmospheric Pressure of Nitrogen Plasmas in a Ferro-Electric Packed Bed Barrier Discharge Reactor Part I: Modeling”, IEEE Transactions on Dielectrics and Electrical Insulation, Vol.11, 481-490, 2004.
    Zazzera, L.; Kesari, S.; Reagen, W.; Tousignant, L.; Holber, W.; Chen, X., “PFC Emission and Atomic Fluorine Generation Using C3F8 and Remote CVD Chamber Clean Technology”, Electrochemical Society Proceedings, 10-19, 1999.
    Zhao, X. S.; Ma, Q., “VOC Removal: Comparison of MCM-41 with Hydrophobic Zeolites and Activated Carbon”, Energy & Fuels, Vol.12, 1051-1054, 1998.
    高正雄,電漿化學,復漢出版社,台南,1991。
    游生任,「以介電質放電技術轉化四氟甲烷及六氟乙烷之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,2000。
    李琪華,「沸石吸附劑之製備、性能測試及特性分析」,碩士論文,國立中正大學化學工程研究所,嘉義,2002。
    白曛綾、盧重興、張國財、曾映棠、黃欣惠,「操作績效自我評估管理制度手冊-活性碳吸附塔」,2003。
    李曼君,「以電漿結合觸媒破壞去除 NF3之初步研究」,碩士論文,國立中央大學環境工程研究所,中壢,2004。
    紀炅廷,「以氧化亞氮氧化法製備酚之研究」,碩士論文,國立台灣科技大學化學工程系,台北,2005。
    鄭立群,「以非熱電漿處理CF4及SF6之效率探討」,碩士論文,國立中央大學環境工程研究所,中壢,2006。
    顏紹儀、李壽南、林俊男、江鴻銘,「兩兆雙星產業之PFCs排放現況與減量策略」,化工技術,Vol. 14,158-165,2006。
    江右君、吳柏昀,「多壁奈米碳管對SF6 吸附特性評估」,第二十三屆空氣污染控制技術研討會,元智大學機械工程學研究所,高雄,2007。
    林錕松、陳暐宗、張敬嚴,「利用草酸鉀礦化及多孔金屬觸媒催化分解全氟化物技術之研發」,環保署/國科會空污防制科技合作計畫,元智大學化學工程與材料科學學系,內壢,2008。
    網路資料:
    行政院原子能委員會核能研究所, “PFCs排放控制處理技術之對照表,”
    http://www.iner.gov.tw/news/c-service/change/03.htm (download on 2009/3/23)

    QR CODE
    :::