| 研究生: |
謝煜彬 Yu-Pin Hsieh |
|---|---|
| 論文名稱: |
固態氧化物電解電池之電解質材料開發 Development of Electrolyte Materials for Solid Oxide Electrolysis Cell |
| 指導教授: |
曾重仁
Chung-jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2017 |
| 畢業學年度: | 105 |
| 語文別: | 中文 |
| 論文頁數: | 73 |
| 中文關鍵詞: | 高溫 、離子傳導 、固態氧化物電解電池 、氧化釔穩定氧化鋯 、釤摻雜氧化鈰 、熱膨脹係數 、維克氏硬度值 |
| 外文關鍵詞: | high temperature, ionic conductivity, solid oxide electrolysis cell, yttria-stabilized zirconia, samarium doped cerium oxide, thermal expansion coefficient, Vickers hardness value |
| 相關次數: | 點閱:14 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要探討用於高溫離子傳導固態氧化物電解電池的電解質材料
開發,使用常見的釔穩定氧化鋯(YSZ)做為基礎,摻雜二氧化鈦(TiO2)和釤
摻雜氧化鈰(SDC)來製備成電解質,通過不同的煆燒溫度、壓錠壓力、壓錠
時間和燒結溫度來探討電池的微觀結構和機械性質,使用網印法製備出陰
陽極,其陰極材料為鎳-氧化釔穩定氧化鋯(Ni-YSZ),陽極則為鈣鈦礦型氧
化物材料鑭鍶錳(LSM),在陰極端通氫氣陽極端通氧氣進行發電觀察其性能,
最後在陰極端通二氧化碳進行電解並觀察其性能。
本研究發現YSZ 摻雜TiO2 和SDC 後可以降低其燒結溫度,並獲得較
大較完整的晶粒,在預燒溫度在1250 ºC、壓錠壓力294 MPa、壓錠時間5
分鐘、燒結溫度1550 ºC 時可以得到最大晶粒尺寸、平均粒徑為50.38 μm、
維克氏硬度值1183.5 HV、在1000 ºC 時熱膨脹係數為8.25 10-6/K、電池電
解性能在1000 ºC 下電壓1.5 V 時電流密度為631 mA/cm2。
In this study, we investigate the electrolyte materials for high temperature
solid oxide electrolysis cells. The electrolyte is prepared by using yttriumstabilized
zirconia (YSZ) as the basis, doped with titanium dioxide (TiO2) and
samarium doped cerium oxide (SDC). The microstructure and mechanical
properties of the electrolyte are investigated for different pre-sintering
temperature, the uniaxial pressure and pressurized duration for producing pellets,
and sintering temperature.
The cathode and anode are prepared by screen printing. The cathode material
is nickel-yttria stabilized zirconia (Ni-YSZ), and the anode material is lanthanum
strontium manganese (LSM) perovskite material. The cell performance is
measured in power generation mode by supplying hydrogen to Ni–YSZ electrode
and oxygen to LSM electrode. The performance in electrolysis mode is measured
by supplying carbon dioxide to Ni-YSZ electrode.
Results show that YSZ doped TiO2 and SDC can reduce the sintering
temperature. Electrolytes with large grains, averaged at 50.4 μm, can be obtained
using a pre-sintering temperature of 1250 ºC, a pressure of 294 MPa for 5 minutes
for producing pellets, and a sintering temperature of 1550 ºC. In addition, the
thermal expansion coefficient at 1000 ºC is 8.25 10-6 /K, the Vickers hardness
value is 1183.5 HV. The current density of the cell is 631 mA/cm2 at 1.5V and 1000 ºC in the electrolysis mode.
[1] H. Yano, F. Shirai, M. Nakayama, and K. Ogura, “Electrochemical reduction of CO2 at three-phase ( gas and liquid and solid ) and two-phase ( liquid and solid ) interfaces on Ag electrodes,” J. Electroanal. Chem., vol. 533, pp. 113–118, 2002.
[2] S. D. Ebbesen and M. Mogensen, “Electrolysis of carbon dioxide in solid oxide electrolysis cells,” J. Power Sources, vol. 193, pp. 349–358, 2009.
[3] G. Centi and S. Perathoner, “Opportunities and prospects in the chemical recycling of carbon dioxide to fuels,” Catal. Today, vol. 148, pp. 191–205, 2009.
[4] S. Z. H. Jensen, P. H. Larsen, and M. Mogensen, “Hydrogen and synthetic fuel production from renewable energy sources,” Int. J. Hydrogen Energy, vol. 32, pp. 3253–3257, 2007.
[5] H. S. Spacil and C. S. Tedmon, “Electrochemical dissociation of water vapor in solid oxide electrolyte cells,” J. Electrochem. Soc., vol. 116, pp. 1619–1626, 1969.
[6] W. Donitz, G. Dietrich, E. Erdle, and R. Streicher, “Electrochemical high temperatyre technology for hydrogen production direct electricity generation,” Int. J. Hydrogen Energy, vol. 13, pp. 283–287, 1988.
[7] A. O. Isenberg, “Energy conversion via solid oxide electrochemical cells
53
at high temperature,” Solid State Ionics, vol. 4, pp. 431–437, 1981.
[8] J. E. O. Brien, C. M. Stoots, J. S. Herring, P. A. Lessing, J. J. Hartvigsen, and S. Elangovan, “Performance measurements of solid-oxide electrolysis cells for,” J. Fuel Cell Sci. Technol., vol. 2, pp. 156–163, 2005.
[9] C. Stoots, J. O. Brien, and J. Hartvigsen, “Results of recent high temperature coelectrolysis studies at the Idaho National Laboratory,” Int. J. Hydrogen Energy, vol. 34, pp. 4208–4215, 2009.
[10] X. Zhang, J. E. O. Brien, R. C. O. Brien, J. J. Hartvigsen, G. Tao, and G. K. Housley, “Improved durability of SOEC stacks for high temperature electrolysis,” Int. J. Hydrogen Energy, vol. 38, pp. 20–28, 2012.
[11] J. Schefold, A. Brisse, and F. Tietz, “Nine thousand hours of operation of a solid oxide cell in steam electrolysis mode,” J. Electrochem. Soc., vol. 159, pp. 137–144, 2012.
[12] K. R. Sridhar and B. T. Vaniman, “Oxygen production on Mars using solid oxide electrolysis,” Solid State Ionics, vol. 93, pp. 321–328, 1997.
[13] M. A. Laguna-Bercero, “Recent advances in high temperature electrolysis using solid oxide fuel cells : A review,” J. Power Sources, vol. 203, pp. 4–16, 2012.
[14] M. Jitaru, “Electrochemical carbon dioxide reduction-fundamental and applied topics,” J. Univ. Chem. Technol. Metall., vol. 42, pp. 333–344, 2007.
54
[15] A. Brisse, J. Schefold, and M. Zahid, “High temperature water electrolysis in solid oxide cells,” Int. J. Hydrogen Energy, vol. 33, pp. 5375–5382, 2008.
[16] O. A. Marina et al., “Electrode performance in reversible solid oxide fuel cells,” J. Electrochem. Soc., vol. 154, pp. 452–459, 2007.
[17] W. Wang, Y. Huang, S. Jung, J. M. Vohs, and R. J. Gorte, “A Comparison of LSM , LSF , and LSCo for Solid Oxide Electrolyzer Anodes,” J. Electrochem. Soc., vol. 153, pp. 2066–2070, 2006.
[18] S. Dalgaard, J. Høgh, K. Agersted, and J. Ulrik, “Durable SOC stacks for production of hydrogen and synthesis gas by high temperature electrolysis,” Int. J. Hydrogen Energy, vol. 36, pp. 7363–7373, 2011.
[19] C. Graves, S. D. Ebbesen, M. Mogensen, and K. S. Lackner, “Sustainable hydrocarbon fuels by recycling CO2 and H2O with renewable or nuclear energy,” Renew. Sustain. Energy Rev., vol. 15, no. 1, pp. 1–23, 2011.
[20] B. Feng, T. Yokoi, A. Kumamoto, M. Yoshiya, Y. Ikuhara, and N. Shibata, “Atomically ordered solute segregation behaviour in an oxide grain boundary,” Nat. Commun., vol. 7, pp. 1–6, 2016.
[21] J. K. Stortelder and I. M. Science, “Ionic conductivity in yttria-stabilized zirconia thin films grown by pulsed laser deposition,” Univerdity of Twente, 2005.
[22] J. W. Fergus, “Electrolytes for solid oxide fuel cells,” J. Power Sources,
55
vol. 162, pp. 30–40, 2006.
[23] M. Mogensen, N. M. Sammes, and G. A. Tompsett, “Physical , chemical and electrochemical properties of pure and doped ceria,” Solid State Ionics, vol. 129, pp. 63–94, 2000.
[24] F. M. L. Figueiredo and F. M. B. Marques, “Electrolytes for solid oxide fuel cells,” WIREs Energy Environ, pp. 1–21, 2012.
[25] B. Zhu, M. Nilsson, and B. Mellander, “Electrolysis studies based on ceria-based composites,” Electrochem. commun., vol. 8, pp. 495–498, 2006.
[26] K. C. Radford and R. J. Bratton, “Zirconia electrolyte cells,” J. Mater. Sci., vol. 14, pp. 59–65, 1979.
[27] J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. J. Gauckler, “Materials design for perovskite SOFC cathodes,” Monatshefte für Chemie, vol. 140, pp. 985–999, 2009.
[28] B. A. Boukamp, “The amazing perovskite anode,” Nat. Publ. Gr., vol. 2, pp. 294–296, 2003.
[29] A. Hauch, S. H. Jensen, S. Ramousse, and M. Mogensen, “Performance and Durability of Solid Oxide Electrolysis Cells,” J. Electrochem. Soc., vol. 153, pp. 1741–1747, 2006.
[30] S. P. Jiang and S. H. W. A. Chan, “A review of anode materials development in solid oxide fuel cells,” J. Mater. Sci., vol. 39, pp. 4405–
56
4439, 2004.
[31] U. Troitzsch and D. J. Ellis, “High-pt study of solid solutions in the system ZrO2-TiO2: the stability of srilankite,” Eur. J. Mineral, vol. 16, pp. 557-584, 2004.
[32] S. C. Singhal and K. Kendall, “High-temperature solid oxide fuel cells: fundamentals, design and applications,” Elsevier, Amsterdam, 2003.
[33] B. V. R. Chowdari, H. L. Yoo, G. M. Choi and J. H. Lee, “Solid state ionics: the science and technology of ions in motion,” World Scientific, Korea, 2004.
[34] J. Fergus, R. Hui, X. Li, D. P. Wilkinson,J. Zhang, “Solid oxide fuel cells: materials properties and performance,” CRC Press, Florida, 2008.