跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃仁波
JEN-PO HUANG
論文名稱: 以冷凍式快速原型法製作組織工程支架
Using FCDM System for Fabricating Tissue Engineering Scaffolds
指導教授: 曾清秀
Ching-Shiow Teseng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 93
語文別: 中文
論文頁數: 59
中文關鍵詞: 組織工程快速成型支架
外文關鍵詞: rapid prototyping, tissue engineering, scaffold
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 利用組織工程的方法可恢復、維持或增進人體組織或器官的功能。其基本概念就是將細胞植入生物可降解的支架,細胞可在支架中分裂、分化、生存以及發揮功能,在將支架植入生物體內以修復組織與器官功能。
    本研究利用冷凍擠壓層積成型(Frozen compressed deposit manufacturing, FCDM)方式製造組織工程用支架,此法由加熱擠壓層積成形(Heated compressed deposit manufacturing, HCDM)加工方法改良而成。
    本系統以電腦設計出三維立體支架外形和支架內部結構的模型,再將支架模型切成多個二維切面並規劃其加工路徑。支架材料以溶劑均勻混合成適當濃度後,由x-y-z平台依規劃路徑移動噴嘴,利用高壓氣體擠壓將材料射出於一個低溫冷卻平台上使之凝固,如此一層一層建構出每個切平面,即可堆疊出複雜形狀的多孔性支架。之後將支架置入冷凍乾燥機,把溶劑抽乾去除以固化支架。
    本研究使用PLGA50/50材料,以FCDM方法製作支架,並探討影響FCDM支架製作品質的相關變因如環境溫度、乾燥時間、擠製壓力與噴頭移動速度等。利用FCDM製作的支架,不會破壞材料原始特性,且適用於多樣材料的製作。經過細胞植附與機械性質等實驗,可知FCDM支架可應用於組織工程的使用。


    目錄 摘要 I 目錄 II 圖索引 V 表索引 VII 第一章 緒論 1 1-1研究動機與目的 1 1-2文獻回顧 1 1-3研究方法 3 1-4論文介紹 3 第二章 組織工程原理 5 2-1組織工程簡介 5 2-2生醫材料(Biomaterial) 6 2-2-1生醫材料用途 6 2-2-2組織工程用生醫材料的要求 6 2-2-3生物可降解材料 7 2-3組織工程支架 10 2-3-1支架的基本特性 10 2-3-2一般支架製備方法 11 2-3-3一般製備方法的缺點 13 2-3-4快速原型製作支架 14 第三章 系統架構與原理 19 3-1 系統作業流程 19 3-2硬體架構 20 3-3系統原理 22 3-3-1支架外型的擷取 22 3-3-2建立切層平面輪廓 23 3-4路徑規劃 24 3-4-1找尋包圍輪廓的菱形 24 3-4-2建立支架立體結構 27 3-5冷凍乾燥支架 28 3-5-1冷凍真空乾燥 28 3-6支架製作方法 30 3-6-1製作前預備工作 30 3-6-2支架製作 31 第四章 實驗結果與討論 32 4-1 PLGA支架的製備 32 4-2影響FCDM的製作參數 33 4-2-1工作溫度 33 4-2-2支架收縮情形 33 4-2-3相鄰支柱中心距與孔洞的關係 34 4-2-4 支撐製作對於支架影響 34 4-2-5冷凍乾燥時間 36 4-2-6擠製壓力與溶液濃度 37 4-3 FCDM支架結構與孔洞分析 38 4-4支架含水率實驗 41 4-4-1 HCDM-PLGA支架含水率測試 41 4-4-2 FCDM-PLGA支架含水率測試 43 4-5機械性質實驗 46 4-6支架與細胞相容性實驗 48 4-7 GPC分子量實驗 49 4-8以FCDM製作不同材料的支架 51 4-8-1PCL支架的製備 51 4-8-2Chitosan支架的製備 53 第五章 結論 55 參考文獻 57

    [1] Lam ,C.X.F., Mo,X.M. and Teoh ,S.H., “Scaffold development using 3D printing with a starch-based polymer”, Materials Science and Engineering C 20, pp. 49–56, 2002.
    [2] Tan,K.H., Chua,C.K., Leong,K.F. and Cheah,C.M., “Scaffold development using selective laser sintering of polyetheretherketone -hydroxyapatite biocomposite blends”, Biomaterials, vol. 24 , pp. 3115–3123 , 2003.
    [3] Cooke, M.N., Fisher, J.P., Dean, D. et al.,“Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth”, Journal of Biomedical Materials Research, vol. 64B, Issue 2 , pp. 65-69, 2002.
    [4] Hutmacher, D.W., Schantz, T., Zein,I. et. al., “Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated via Fused Deposition Modeling”, Journal of Biomedical Materials Research, vol. 55, 2, pp. 203-216, 2001.
    [5] Landers, R., Hubner, U., Schmelzeisen, R. et al., “Rapid prototyping of scaffolds derived from thermoreversible hydrogels and tailored for applications in tissue engineering”, Biomaterials, vol. 23, pp. 4437–4447, 2002.
    [6] Ang, T.H., Sultana, F.S.A., Hutmacher, D.W.et al., “Fabrication of 3D chitosan–hydroxyapatite scaffolds using a robotic dispensing system”, Materials Science and Engineering, C 20, pp. 35–42, 2002.
    [7] Seal, B.L., Otero, T. C. and Panitch, A., “Review, Polymeric biomaterials for tissue and organ regeneration”, Material Science and Engineering; R 34 ; pp. 147-230, 2001.
    [8] Leong, K.F. Cheah, C.M. and Chua, C.K.” Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs” Biomaterials, vol. 24 , pp. 2363-2378 , 2003.
    [9] Sachlos, E., Czernuszka, J.T., ”Making tissue engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue engineering scaffolds”, European Cells and Materials, 5., pp. 29-40 , 2003.
    [10] Lanza, R.P., Langer, R. and Vacanti, J., Principles of Tissue Engineering, 2nd Ed., Academic Press, pp. 251-261, 2000.
    [11] Hutmacher, D.W.,“Scaffolds in Tissue Engineering Bone and Cartilage”, Biomaterials, vol. 21, pp. 2529-2543, 2000.
    [12] Kalita, S.J. and Bosea, S., “Development of controlled porosity polymer-ceramic composite scaffolds via fused deposition modeling”, Materials Science and Engineering C 23, pp. 611- 620 , 2003.
    [13] Ma, P.X., “Scaffolds for tissue fabrication”, materialstoday, vol.7, Issue 5, pp. 30-40, 2004.
    [14] Sun, W.; Lal, P., “Recent development on computer aided tissue engineering — a review”, Computer Methods and Programs in Biomedicine, vol. 67, Issue 2, pp. 85 – 103, 2002.
    [15] Sun, W., Darling, A., Starly, B. et al., “Computer-aided tissue engineering: overview, scope and challenges”, Biotechnology and Applied Biochemistry, vol. 39, Issue 1, pp. 29-47, 2004.
    [16] Sun, W., Starly B, Darling, A., Gomez, C., “Computer-Aided Tissue Engineering: Application to biomimetic modeling and design of tissue scaffolds”, Biotechnology and Applied Biochemistry, vol. 39, Issue 1, pp. 49-58, 2004.
    [17]Atkins, P., The Elements of Physical Chemistry 2nd ED, Oxford University Press, 1996.
    [18]王盈錦, 生物醫學材料, 合計圖書出版社, 民91
    [19]杜逸虹, 物理化學, 三民書局出版社, 民76
    [20]吳典錡, “快速原型系統切層方法之研究”, 國立台灣科技大學高分子工程研究所碩士論文, 民91
    [21]呂恒綜, “組織工程精密支架之製造”, 國立中央大學機械工程研究所碩士論文, 民91

    QR CODE
    :::