| 研究生: |
林昭弘 Chao-Hung Lin |
|---|---|
| 論文名稱: |
摻釕鈦酸鋇單晶之光學與光折變性質 The Optical and Photorefractive Properties of Ru-doped Barium Titanate Single Crystals |
| 指導教授: |
張正陽
Jeng-Yang Chang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 光電科學與工程學系 Department of Optics and Photonics |
| 畢業學年度: | 90 |
| 語文別: | 中文 |
| 論文頁數: | 63 |
| 中文關鍵詞: | 黑暗導電率 、雙波混合 、釕 、鈦酸鋇 、光折變 |
| 外文關鍵詞: | photorefractive, barium titanate, Ru, BaTiO3, dark conductivity, two-beam coupling |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
日益成熟的光折變理論,帶動光折變技術廣泛地應用在光資訊處理、類神經網路及光資訊儲存等領域。然而由於光折變材料的發展困難,以致於無法提供理想的材料供研究使用。尋找能量增益係數高、反應速度快和具有適當光扇效應的光折變材料成了目前的研究所期盼的重點之一。
因此,在本實驗中,製作了不同摻雜濃度的摻釕鈦酸鋇單晶,探討摻入釕雜質之後,晶體的光學與光折變性質隨不同入射光波長變化的情形,並嘗試找出晶體內部能階的分佈,企圖能夠尋找出製造反應速度與能量增益皆適當之晶體的方法。
摻釕鈦酸鋇單晶為紅色晶體,藍紫光區較敏感,雙波混合能量增益係數大,弱光速度快,強光速度不慢,主要載子型態為電洞,具有很大的黑暗導電率。本晶體具有適用於藍光以及弱光速度與強光速度差不多的特點,有助於應用在影像處理與存取。黑暗導電率較大的特點,若與氧化還原氣氛處理配合,可望有助於簡化晶體之製程。
BaTiO3 crystals are important photorefractive materials due to their self-pumped phase-conjugation and large electro-optic coefficient. High gain, fast response time and proper beam fanning BaTiO3 crystals are desirable. We fabricated photorefractive BaTiO3:Ru single crystals and then investigated their optical and photorefractive properties. In as-grown Ru-doped BaTiO3 single crystals, the absorption peak is around 450nm. The dark conductivity is dominant in the crystal and much greater than the photo conductivity with a low intensity pumping beam.
[1] A. R. Johnson, and J. M. Weingart, “Determination of the low-frequency linear electro-optic effect in tetragonal BaTiO3”, J. Opt. Soc. Am. Vol. 55(7), pp. 828, 1965
[2] C. Yang, Y. Zhang, P. Yeh, Y. Zhu, and X. Wu, “Photorefractive properties of Ce:BaTiO3 crystals”, Optics Comm. 113(1995) 416-420
[3] J. Y. Chang, "Effects of cobalt-doping, oxygen-reduction and crystallographic orientation on the photorefractive properties of barium titanate", Thesis for the degree of Ph.D at MIT, 1992
[4] K. Buse:Appl. Phys. B 64, 273(1997).
[5] R. N. Schwartz, B. A. Wechsler, and L. West, "Spectroscopic and photorefractive properties of molybdenum-doped barium titanate", Appl. Phys. Lett. Vol. 67(10), pp. 1352, Sep. 1995
[6] G. W. Ross, P. Hribek, R. W. Eason, M. H. Garret, and D. Rytz, Optics Comm. 101(1993) 60
[7] J. Y. Chang, C. Y. Huang, R. R. Yueh, and C. F. Chu, "Effects of the annealing atmosphere on the photorefractive properties of BaTiO3", J. Opt. Soc. Am. B. Vol. 16, No. 2, 1999
[8] J. Y. Chang, C. R. Chinjen, R. H. Tsou, C. Y. Huang, C. C. Sun, and M. W. Chang, "Photorefractive effect in hydrogen-reduced BaTiO3", Optics Comm. 138(1997) 101-10
[9] 朱振甫, “BaTiO3:Nb及不同溫度對BaTiO3:Rh單晶之光學與光折變性質之研究”, 國立中央大學光電科學研究所碩士論文, 民國87年
[10] N. V. Kukhtarev, V. B. Markov, S. G. Odoulove, M. S. Soshkin, and V. Vinetskii, “Holographic storage in electrooptic crystal I. Steady state”, Ferroelectrics, 22, 949(1979).
[11] J. Feinberg, D. Heiman, A. R. Tangrary, Jr. and R. Hellwarth, “Photorefractive effects and light-induced charge migrating in barium titanate”, J. Appl. Phys., 51, 1297(1980).
[12] F. P. Strohkendl, J. M. C. Jonathan and R. W. Hellwarth, “Hole-electron competition in photorefractive grating”, Opt. Lett., 11, 312(1986).
[13] G. C. Valley, “Simultaneous electron/hole transport in photorefractive materials”, J. Appl. Phys., 59, 3363(1986).
[14] P. Tayebati and D. Mahgerefteh, “Theory of the photorefractive materials”, J. Appl. Phys., 5, 4082(1991).
[15] P. Tayebati, “Effect of shallow traps on electron-hole competition in semi-insulating photorefractive materials”, J. Opt. Soc. Am. B, 3, 415(1992).
[16] K. Buse, E. Kratzig, “Three-valence charge-transport model for explanation of the photorefractive effect”, Appl. Phys. B, 61, 27(1995).
[17] M. B. Klein and G. C. Valley, “Beam coupling in BaTiO3 at 442nm”, J. Appl. Phys. 11, 312(1985).