跳到主要內容

簡易檢索 / 詳目顯示

研究生: 祝麒翔
Chi-Hsiang Chu
論文名稱: 銣原子光鐘絕對頻率之量測
Absolute frequency of rubidium optical clock
指導教授: 鄭王曜
Wang-Yau Cheng
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 71
中文關鍵詞: 銣原子光鐘頻率雙光子躍遷賽曼效應氣壓偏移
外文關鍵詞: Rubidium, optical clock, two photon transition, Zeeman effect, collision shift
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 銣原子5S1/2 → 5D5/2 雙光子躍遷在原子分子光學領域為非常重要的躍遷,
    且其頻率被國際度量衡委員會公開發表,量測此原子譜線的絕對頻率為本論文首
    要目的,然而根據本實驗室石宇哲學長先前的量測,量測的譜線(總共九條) 皆與
    國際標準值差距了30 kHz 左右,我們猜測主要有兩個原因,一為隔磁材料坡莫合
    金(permalloy) 無法有效隔磁,進而產生賽曼偏移(Zeeman shift),因此設計了荷
    姆霍茲線圈製造無磁場環境;二為玻璃器室內部有未知氣體,進而碰撞產生氣壓
    偏移(pressure shift),因此架設了一套真空系統,製造只有純銣原子之氣室。
    為了使掃描出來的原子譜線有良好的重複率以及穩定性,我們先使用Pound-
    Drever Hall 鎖頻技術使雷射抖動範圍從3MHz 縮小至0.6 MHz;再來我們使用電
    光調制法將原子鎖在交叉譜線上,使雷射頻率在鎖頻過程不會受到調制影響,且
    頻率可由電光調制器控制,使我們進而掃頻。
    在使用荷姆霍茲線圈的過程中,我們逐步增加反向磁場的大小並記錄譜線線
    寬,當線寬為最小值時,代表譜線沒有因為受到磁場影響,此時所量得的絕對頻
    率仍與國際標準值差距30kHz,因此我們認為這個差距並非磁場隔絕不好所造成
    的。
    在抽真空過程中,我們使用渦輪幫浦將真空腔氣壓抽至1 × 10−7 Torr,並利
    用推拉式真空導引將內部銣原子安瓿打破,並利用溫度梯度讓原子大量沉澱在玻
    璃旁,將其當成冷端凝子(cold finger)。此外,我們也利用780 nm 雷射探測銣原
    子5S1/2 → 5P3/2 單光子躍遷,利用穿透光的凹陷程度計算原子密度比,進而推
    算原子蒸氣壓。最終我們量測出雙光子躍遷之頻率,並與美國國家標準局(NIST)
    提供的值非常接近。


    In this thesis, we have measured the clock transition of rubidium. we first
    developed the differential Zeeman shift by Helmholtz coil, which coefficient of 87Rb
    5S(F = 2) → 5D(F = 4) is −48.9 ± 2.6 kHz/G. After that, we have measured
    the Rb self-collision shift in a vacuum chamber system, and the linear coefficient is
    −120±70 Hz/μTorr. On the other hand, For the stability of the frequency-stabilized
    laser, the Allan deviation can reach 3×10( − 13) within 1000 second of integration
    time. Finally, we have measured the rubidium 5S1/2(F = 3) → 5D5/2(F′ = 1 ∼ 5)
    transition, and the results are only ±5 kHz difference with the suggested value of
    Certificate in Investment Performance Measurement(CIPM).

    目錄 摘要iii Abstract v 致謝vii 目錄ix 圖目錄xi 表目錄xiii 第一章緒論1 1.1 研究動機. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 歷史上的實驗. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 第二章基本理論7 2.1 超精細結構. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 銣原子能階躍遷. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2.2.1 5S1/2 → 5D5/2 雙光子躍遷. . . . . . . . . . . . . . . . . . . . . 9 2.2.2 5S1/2 → 5P3/2 D2 躍遷. . . . . . . . . . . . . . . . . . . . . . . 10 2.3 必爾-朗伯定律(Beer-Lambert law) . . . . . . . . . . . . . . . . . . 11 2.4 賽曼效應[1] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 2.5 碰撞效應[2] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 第三章實驗架設17 3.1 778nm 光纖雷射與重複光路之聲光調制器. . . . . . . . . . . . . . 18 3.2 穩頻雷射系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 3.2.1 Pound-Drever Hall(PDH) 鎖頻法. . . . . . . . . . . . . . . . . 20 ix 3.2.2 電光頻率調制穩頻法. . . . . . . . . . . . . . . . . . . . . . . . 22 3.3 掃頻雷射系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.1 荷姆霍茲線圈隔磁系統. . . . . . . . . . . . . . . . . . . . . . . 24 3.3.2 真空掃頻系統. . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 絕對頻率量測. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 第四章實驗結果與討論31 4.1 銣原子光鐘頻率穩定度分析. . . . . . . . . . . . . . . . . . . . . . 31 4.2 銣原子螢光譜線中心之分析. . . . . . . . . . . . . . . . . . . . . . 33 4.2.1 賽曼偏移. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2.2 光強度偏移與穿越時間增寬. . . . . . . . . . . . . . . . . . . . 38 4.2.3 自身碰撞偏移. . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 4.2.4 碰撞偏移. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.3 誤差討論. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 4.4 銣原子光鐘絕對頻率之量測. . . . . . . . . . . . . . . . . . . . . . 45 4.4.1 玻璃原子氣室. . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 4.4.2 真空原子氣室. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 第五章結論與未來展望49 參考文獻51

    [1] D. A. Steck, “Rubidium 87 d line data,” 2001.
    [2] H. Foley, “The pressure broadening of spectral lines,” Physical Review, vol. 69, no. 11-
    12, p. 616, 1946.
    [3] T. Quinn, “Practical realization of the definition of the metre (1997),” metrologia,
    vol. 36, no. 3, p. 211, 1999.
    [4] 石宇哲, “The study of rubidium optical clock without frequency modulation,” 2020.
    [5] F. Nez, F. Biraben, R. Felder, and Y. Millerioux, “Optical frequency determination
    of the hyperfine components of the 5s12-5d32 two-photon transitions in rubidium,”
    Optics communications, vol. 102, no. 5-6, pp. 432–438, 1993.
    [6] L. Hilico, R. Felder, D. Touahri, O. Acef, A. Clairon, and F. Biraben, “Metrological
    features of the rubidium two-photon standards of the bnm-lptf and kastler brossel
    laboratories,” The European Physical Journal-Applied Physics, vol. 4, no. 2, pp. 219–
    225, 1998.
    [7] R.-B. Li, L. Zhou, J. Wang, and M.-S. Zhan, “Measurement of the quadratic zeeman
    shift of 85rb hyperfine sublevels using stimulated raman transitions,” Optics
    communications, vol. 282, no. 7, pp. 1340–1344, 2009.
    [8] N. D. Zameroski, G. D. Hager, C. J. Erickson, J. H. Burke, et al., “Pressure broadening
    and frequency shift of the 5s {sub 1/2}→ 5d {sub 5/2} and 5s {sub 1/2}→ 7s
    51
    {sub 1/2} two photon transitions in {sup 85} rb by the noble gases and n {sub 2},”
    Journal of Physics. B, Atomic, Molecular and Optical Physics, vol. 47, 2014.
    [9] O. Terra and H. Hussein, “An ultra-stable optical frequency standard for telecommunication
    purposes based upon the 5s1/2→ 5d5/2 two-photon transition in rubidium,”
    Applied Physics B, vol. 122, no. 2, pp. 1–12, 2016.
    [10] K. W. Martin, G. Phelps, N. D. Lemke, M. S. Bigelow, B. Stuhl, M. Wojcik, M. Holt,
    I. Coddington, M. W. Bishop, and J. H. Burke, “Compact optical atomic clock based
    on a two-photon transition in rubidium,” Physical Review Applied, vol. 9, no. 1,
    p. 014019, 2018.
    [11] N. D. Lemke, K. W. Martin, R. Beard, B. K. Stuhl, A. J. Metcalf, and J. D. Elgin,
    “Measurement of optical rubidium clock frequency spanning 65 days,” Sensors,
    vol. 22, no. 5, p. 1982, 2022.
    [12] E. D. Black, “An introduction to pound–drever–hall laser frequency stabilization,”
    American journal of physics, vol. 69, no. 1, pp. 79–87, 2001.
    [13] K.-H. Chen, C.-M. Wu, S.-R. Wu, H.-H. Yu, T.-W. Liu, and W.-Y. Cheng, “Influence
    of atmospheric helium on secondary clocks,” Optics Letters, vol. 45, no. 14, pp. 4088–
    4091, 2020.
    [14] R. Felder, D. Touahri, O. Acef, L. Hilico, J.-J. Zondy, A. Clairon, B. de Beauvoir,
    F. Biraben, L. Julien, F. Nez, et al., “Performance of a gaalas laser diode stabilized
    on a hyperfine component of two-photon transitions in rubidium at 778 nm,” in Laser
    Frequency Stabilization and Noise Reduction, vol. 2378, pp. 52–57, SPIE, 1995.
    [15] D. Touahri, O. Acef, A. Clairon, J.-J. Zondy, R. Felder, L. Hilico, B. De Beauvoir,
    F. Biraben, and F. Nez, “Frequency measurement of the 5s12 (f= 3)- 5d52 (f=
    52
    5) two-photon transition in rubidium,” Optics communications, vol. 133, no. 1-6,
    pp. 471–478, 1997.
    [16] D. J. Jones, S. A. Diddams, J. K. Ranka, A. Stentz, R. S. Windeler, J. L. Hall, and
    S. T. Cundiff, “Carrier-envelope phase control of femtosecond mode-locked lasers and
    direct optical frequency synthesis,” Science, vol. 288, no. 5466, pp. 635–639, 2000.
    [17] R. Felder, “Practical realization of the definition of the metre, including recommended
    radiations of other optical frequency standards (2003),” Metrologia, vol. 42, no. 4,
    p. 323, 2005.
    53

    QR CODE
    :::