| 研究生: |
張碩文 Shuo-wen Chang |
|---|---|
| 論文名稱: |
兩獨立二項分布勝算筆的區間估計之研究 Confidence Intervals for the Odds Ratio in Two Independent Binomial Samples |
| 指導教授: |
楊明宗
Ming-Chung Yang |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
理學院 - 統計研究所 Graduate Institute of Statistics |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 82 |
| 中文關鍵詞: | 區間估計 、勝算比 、正確條件方法 、正確非條件方法 、兩獨立二項分布 |
| 外文關鍵詞: | the Exact Unconditional Approach., Two Independent Binomial Samples, the Exact Conditional Approach, Odds Ratio, Interval Estimation |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
針對兩獨立二項母體的勝算比,我們通常會以區間估計的方式來探討勝算比。一般而言都是使用大樣本近似方法建構勝算比的信賴區間,但在中、小樣本時,此方法誤差會很大,故本文使用正確條件法及正確非條件法建構勝算比的信賴區間。由正確條件法所建構的信賴區間常具有保守性;由正確非條件法所建構的信賴區間會有最短的區間長度,其覆蓋機率會靠近名目水準 1-α 且不小於 1-α 。
For the interval estimation of the odds ratio in two independent binomial samples, the usual method to construct confidence interval is the large-sample approximation method. But, such a method will produce a confidence interval which has the actual significant level much larger than or equal to the nominal lever if the sample sizes are small or moderate. In this paper, we use
the exact conditional approach and the exact unconditional approach to obtain a modified interval. Numerical studies show that confidence intervals based on the exact conditional approach can be conservative with small
to moderate sample sizes. The modified confidence intervals based on the exact unconditional approach has shorter length, and its coverage probability is closer to and at least the nominal level.
1. Agresti, A. (2003). Dealing with discreteness:making ''exact'' confidence intervals for proportions, differences of proportions, and odds ratios more exact. Statistical Methods in Medical Research 2003 12, 3-21.
2. Agresti, A.(2007). An Introduction to Categorical Data Analysis, 2nd edition. John Wiley and Sons, INC., Publication.
3. Agresti, A. and Gottard, A. (2007). Nonconservative exact small-sample inference for discrete data. Computational Statistics and Data Analysis 51, 6447-6458.
4. Agresti, A. and Min, Y. (2001). On a small-sample confidence intervals for parameters in discrete distributions. Biometrics 57, 963-971.
5. Agresti, A. and Min, Y. (2002). Unconditional small-sample confidence intervals for the odds ratio. Biostatistics 3, 379-386.
6. Berger, R.L. and Boos, D.D. (1994). P-values maximized over a confidence set for the nuisance parameter. Journal of the American Statistical Association 89, 1012-1016.
7. Blaker, H. (2000). Condence curves and improved exact condence intervals for discrete distributions. Canadian Journal of Statistics 28, 783-798.
8. Casella, G. and Berger, R.L. (2002). Statistical inference, 2nd edition. Duxbury Press, Pascic Grove, California
9. Clopper, C.J. and Pearson, E.S. (1934). The use of confidence or fiducial limits illustrated in the case of the binomial. Binometrika 26, 404-413.
10. Cornfield, J. (1956). A statistical problem arising from retrospective studies. In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability (ed. Neyman, J.), 4, 135-148.University of California Press, Berkeley.
11. Fisher, R.A. (1935). The logic of inductive inference. Journal of the Royal Statistical Society Series A 98, 39-54.
12. Fries, L.F., Dillon, S.B., Hildreth, J.E., Karron, R.A., Funkhouser, A.W., Friedman, C.J., Jones, C.S., Culleton, V.G. and Clements, M.L. (1993). Safety and
immunogenicity of a recombinant protein influenza A vaccine in adult human volunteers and protective sfficacy against wild-type H1N1 virus challenge. Journal of
Infectious Diseases 167, 593-601.
13. Haber, M. (1986). An exact unconditional test for the 2 × 2 comparative trial.Psychological Bulletin 99, 129-132.
14. Hwang, J.T. and Yang, M.C. (2001). An optimality theory for mid p-value in 2 × 2 contingency table. Statistica Sinica 11, 807-826.
15. Lancaster, H.O. (1961). Significance tests in discrete distributions. Journal of the American Statistical Association 56, 223-234.
16. Lin, C.Y. and Yang, M.C. (2005). Improved p-value tests for c omparing two independent binomial proportions. National Central University Technical Report.
17. Lin, C.Y. and Yang, M.C. (2006). Improved exact confidence intervals for the odds ratio in two independent binomial samples. Biometrical Journal 48, 1008-1019.
18. Suissa, S. and Shuster, J.J. (1985). Exact unconditional sample sizes for the 2 × 2 binominal trial. Journal of the Royal Statistical Society Series A 148, 317-327.
19. Woolf, B. (1995). Unbiased condence intervals for the odds ratio of two independent binomial samples with application to case-control data. Biometrics 57, 484-489.
20. Troendle, J.F. and Frank, J. (2001). On estimating the relation between blood group and disease. Annals of Human Genetics 19, 251-253.