跳到主要內容

簡易檢索 / 詳目顯示

研究生: 施性安
Hsing-An Shih
論文名稱: 金屬發泡材應用於質子交換膜燃料電池內流道之模擬分析
Numerical Study on Metal Foam Flow Field in Proton Exchange Membrane Fuel Cell
指導教授: 曾重仁
Tseng, Chung-jen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
畢業學年度: 98
語文別: 中文
論文頁數: 88
中文關鍵詞: 流道設計金屬發泡材數值分析
外文關鍵詞: Flow field design, metal foam, CFD, PEMFC
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以金屬發泡材應用在質子交換膜燃料電池之內流道為標的,探討流場的分區數量(單區、三區、五區),以及進氣的方式(單入口、多入口)對電池內傳輸現象及電池性能之影響。使用CFD前處理器GAMBIT建構完整的三維單顆燃料電池模型及格點系統,搭配計算流體力學軟體FLUENT,分析內部流場分布、電質傳現象以及在實際應用上對燃料電池之性能及流道壓損的影響,藉由選用最佳燃料使用率,和相對較小的壓力損失之流道設計,以符合實際應用上的經濟效益。
    由本研究中得知,在流場分區的流道設計中,以單入口進氣的情況下,隨分區數量越多,燃料流經過的路徑越長,使得流場中的壓降增加,燃料往側向和徑向的擴散能力增強,促使反應氣體抵達觸媒參與反應,進而提升反應氣體有效使用率。在進氣方式不同的設計中,多入口進氣設計之性能較單入口略差,且多入口之設計有流量分配不均的問題,但流場壓降較單入口之設計小。考慮加濕程度、發泡材尺寸、鎖模時壓縮程度對燃料電池性能的影響,隨加濕程度越高、發泡材孔徑越小、壓縮程度越大,電池性能也隨之提升,但增加的幅度有限。而單入口設計之性能皆較多入口設計佳。


    The main purposes of this study are to investigate the use of metal foam as the flow distributor of proton exchange membrane fuel cells (PEMFCs) and the effects of flow field design on the transport phenomena and the performance of the fuel cells. A three-dimensional mesh system was built by using the GAMBIT and the discredited equations were solved by the CFD software FLUENT. Results of flow, mass, pressure, and electric distributions under real operating conditions are presented and discussed.
    Based on the results, for single entrance designs, the pressure drop increases as the number of partitions increases. This increase in pressure drop results in enhanced transport of reactants in the through-plane direction. Therefore, reaction rate as well as cell performance increase. As for the comparison between single inlet and multiple inlets, although multiple inlet design has lower pressure drop, it causes lower cell performance due to uneven flow distribution among different partitions.
    In addition, cell performance was found to increase slightly if the reactant gas was humidified, the pore size of the metal foam was reduced, or the foam/carbon paper was slightly compressed.

    中文摘要 i Abstract v 致謝 vi 目錄 viii 表目錄 xi 圖目錄 xii 符號說明 xv 第一章 緒論 1 1.1 前言 1 1.2 燃料電池主要的結構介紹與運作原理 2 1.2.1 燃料電池主要的結構介紹 2 1.2.2 燃料電池運作原理 8 1.3 燃料電池極化現象 9 1.4 文獻回顧 11 1.4.1 燃料電池模型之發展 11 1.4.2 流道幾何結構設計 14 1.4.3 金屬發泡材在燃料電池的應用 16 1.4.4 計算流體力學在燃料電池上的應用 18 1.5 研究動機與目的 20 第二章 理論分析 22 2.1 問題描述與基本假設 22 2.1.1 問題描述與幾何模型 22 2.1.2 基本假設 23 2.2 統御方程式 24 2.3 邊界條件與初始條件 30 第三章 數值方法與驗證 33 3.1 有限體積法 34 3.2 壓力修正方程式 38 3.3 SIMPLE法的演算程序 41 3.4 交錯式網格 42 3.5 程式驗證 43 3.5.1 程式驗證 43 3.5.2 格點測試 44 第四章 結果與討論 45 4.1 不同流道幾何形狀的影響 45 4.2 不同加濕程度之影響 47 4.3 不同發泡材孔徑之影響 48 4.4 不同肋壓縮效應之影響 49 4.5 非等向性滲透率之影響 49 第五章 結論與建議 51 5.1 結論 51 5.2 未來研究方向與建議 52 第六章 參考文獻 53

    [1] J. Larminie and A. Dicks, Fuel Cell Systems Explained, 2nd Edition, John Wiley & Sons, 2003.
    [2] J. H. Choi, et al. “Methanol electro-oxidation and direct methanol fuel cell using Pt/Rh and Pt/Ru/Rh alloy catalysts,” Journal of Electrochemical Acta, Vol. 50, pp. 787-790, 2004.
    [3] R. V. Niquirilo, “Formic Acid Oxidation at Pd, Pt and PbOx-based Catalysts and Calculation of their Approximate Electrochemical Active Areas,” International Journal of Electrochemical Science, Vol. 5, pp. 344-354, 2010.
    [4] J. B. Xu, “Effect of surface composition of Pt-Au alloy cathode catalyst on the performance of direct methanol fuel cells,” International Journal of Hydrogen Energy, Vol. 35, pp. 8699-8706, 2010.
    [5] V. A. Paganin, E. A. Ticianelli, and E. R. Gonzalez, “Development of small polymer electrolyte fuel cell stacks,” Journal of Power Source, Vol. 70, pp. 55-58, 1998.
    [6] D. M. Bernardi and M. W. Verbrugge, “Mathematical model of a gas diffusion electrode bonded to a polymer electrolyt,” Journal of AICHE, Vol. 37, pp. 1151-1163, 1991.
    [7] S. Um, C. Y. Wang, and K. S. Chen, “Computational fluid dynamics modeling of polymer electrolyte membrane fuel cells,” Journal of Electrochemical Society, Vol. 147, pp. 4485-4493, 2000.
    [8] D. M. Bernardi and M. W. Verbrugge, “A mathematical model of the solid-polymer-electrolyte fuel cell,” Journal of Electrochemical Society, Vol. 139, pp. 2477-2491, 1992.
    [9] T. A. Zawodzinski, T. E. Springer and S. Gottesfeld, “Polymer Electrolyte Fuel Cell Model,” Journal of Electrochemical Society, Vol. 138, pp. 2334-2342, 1991.
    [10] T. V. Nguyen and R. E. White, “A water and heat management model for proton‐exchange‐membrane fuel cells,” Journal of Electrochemical Society, Vol. 140, pp. 2178-2186, 1993.
    [11] V. Gurau, H. Liu and S. Kakac, “Two-dimensional model for proton exchange membrane fuel cells,” Journal of Electrochemical Society, Vol. 139, pp. 2477-2491, 1992.
    [12] J. S. Yi and T. V. Nguyen, “An along‐the‐channel model for proton exchange membrane fuel cells,” Journal of Electrochemical Society, Vol. 145, pp. 1149-1159, 1998.
    [13] J. S. Yi and T. V. Nguyen, “Multicomponent transport in porous electrodes of proton exchange membrane fuel cells using the interdigitated gas distributors,” Journal of Electrochemical Society, Vol. 146, pp. 38-45, 1999.
    [14] S. Dutta1, S. Shimpalee1 and J. W Van Zee, “Three-dimensional numerical simulation of straight channel PEM fuel cells,” Journal of Applied Electrochemistry, Vol. 30, pp. 135-146, 2000.
    [15] S. Mazumder and J. V. Cole, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells,” Journal of Electrochemical Society, Vol. 147, pp. 1510-1517, 2003.
    [16] G. Hu, J. Fan, S. Chen, Y. Liu and K. Cen, “Three-dimensional numerical analysis of proton exchange membrane fuel cells (PEMFCs) with conventional and interdigitated flow fields,” Journal of Power sources, Vol. 136, pp. 1-9, 2004.
    [17] P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000:Part I. Fundamental scientific aspects,” Journal of Power sources, Vol. 102, pp. 242-252, 2001.
    [18] P. Costamagna and S. Srinivasan, “Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000:Part II. Engineering, technology development and application aspects,” Journal of Power sources, Vol. 102, pp. 253-269, 2001.
    [19] S. Shimpalee, S. Greenway and J. W. Van Zee, “The impact of channel path length on PEMFC flow-field design,” Journal of Power Sources, Vol. 160, pp. 398-406, 2006.
    [20] K. Tuber, A Oedegraard, M. Hermann and C. Hebling, “Investigation of fractal flow-field in portable proton exchange membrane and direct methanol fuel cell,” Journal of Power Sources, Vol. 131, pp. 175-181, 2004.
    [21] S. C. Andrade, A. H. Guerrero and M. R. von Spakovsky, “Current density and polarization curves for radial flow field patterns applied to PEMFCs,” Journal of Energy, Vol. 35, pp. 1-8, 2009.
    [22] K. Scott, P. Argyropoulos, P. Yiannopoulos and W. M. Taama, “Electrochemical and gas evolution characteristics of direct methanol fuel cells with stainless steel mesh flow beds,” Journal of Applied Electrochemical Society, Vol. 31, pp. 823-832, 2001.
    [23] A. Kumar and R.G. Reddy, “Modeling of polymer electrolyte membrane fuel cell with metal foam in the flow-field of the bipolar/end plates,” Journal of Power Sources, Vol. 114, pp. 54-62, 2003.
    [24] A. Kumar and R. G. Reddy, “Materials and design development for bipolar/end plates in fuel cells,” Journal of Power Sources, Vol. 129, pp. 62-67, 2004.
    [25] R. Jiang, C. Rong and D. Chu, “Determination of energy efficiency for a direct methanol fuel cell stack by a fuel circulation method,” Journal of Power Sources, Vol. 126, pp. 119-124, 2004.
    [26] S. Arisetty, A. K. Prasad and S. G. Advani, “Metal foams as flow field and gas diffusion layer in direct methanol fuel cells,” Journal of Power Sources, Vol. 165, pp. 49-57, 2007.
    [27] 蔡秉蒼,曾重仁,「金屬發泡材質子交換膜燃料電池之性能分析」,第三屆全國氫能與燃料電池學術研討會,FC043,國立台南大學,2008。
    [28] 陳孟怡,「金屬發泡材質子交換膜燃料電之研究」,碩士論文,國立中央大學機械工程學系,2009。
    [29] J. Chen, “Experimental study on the two phase flownext term behavior in PEM fuel cell parallel channels with porous media inserts,” Journal of Power Sources, Vol. 195, pp. 1122-1129, 2010.
    [30] J. Kim and N. Cunninghham, “Development of porous carbon foam polymer electrolyte membrane fuel cell,” Journal of Power Sources, Vol. 195, pp. 2291-2300, 2010.
    [31] S. Dutta1, S. Shimpalee1 and J. W. Van Zee, “Numerical prediction of mass-exchange between cathode and anode channels in a PEM fuel cell,” International Journal of Heat and Mass Transfer, Vol. 44, pp. 2029-2042, 2001.
    [32] T. Berning, D. M. Lu and N. Djilali, “Three-dimensional computational analysis of transport phenomena in a PEM fuel cell,” Journal of Power sources, Vol. 106, pp. 284-294, 2002.
    [33] S. Mazumder and J. V. Cole, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells,” Journal of Electrochemical Society, Vol. 147, pp. 1510-1517, 2003.
    [34] A. Kumar and R. G. Reddy, “Effect of channel dimensions and shape in the flow-field distributor on the performance of polymer electrolyte membrane fuel cells,” Journal of Power sources, Vol. 113, pp. 11-18, 2003.
    [35] S. Shimpalee, S. Greenway, D. Spuckler and J. W. Van Zee, “Predicting water and current distributions in a commercial-size PEMFC,” Journal of Power sources, Vol. 135, pp. 79-87, 2004.
    [36] U. Pasaogullari and C. Y. Wang “Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells using Fluent,” Electrochemical Engine Center, University Park, 16802.
    [37] X. Peng and Y. Boming, “Developping a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry,” Advances in Water Resources, Vol. 31,pp. 74-81, 2008.
    [38] C. Y. Wang S Um, and K. S. Chen,“ Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells,” Journal of Electrochemical Society, Vol. 147, pp. 4485-4493, 2000.
    [39] J. V. Cole and S. Mazumder, “Rigorous 3-D Mathematical Modeling of PEM Fuel Cells,” Journal of Electrochemical Society, Vol. 150, pp. A1503-A1509, 2003.
    [40] J. Divisek, A. A. Kulikovsky and A. A. Kornyshev, “Modeling the Cathode Compartment of Polymer Electrolyte Fuel Cells-Dead and Active Reaction Zones,” Journal of Electrochemical Society, Vol. 146, pp. 3981-3991, 1999.
    [41] F. Moukalled and M. Darwish, “A comparative assessment of the performance of mass conservation-based algorithms for incompressible multiphasw flows,” Numerical Heat Transfer Part B, Vol 42, pp. 259-283, 2002.
    [42] S. V. Patankar, “Numerical Heat Transfer and Fluid Flows,” Hemisphere, Washington, 1980.
    [43] W. Yuan, Y. Tang, M. Pan, Z. Li and B. Tamg, “Determination of the optimal active area for proton exchange membrane fuel cells with parallel, interdigitated or serpentine designs,” Renewable Energy, Vol. 35, pp. 656-666, 2010.

    QR CODE
    :::