| 研究生: |
江建叡 Chien-Jui Chiang |
|---|---|
| 論文名稱: |
陰極金屬發泡材厚度與流道設計對高溫型質子交換膜燃料電池之影響 The Effect of Cathodic Metal Foam Thickness and Flow Channel Design for HT-PEMFC |
| 指導教授: |
曾重仁
Chung-Jen Tseng |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2016 |
| 畢業學年度: | 104 |
| 語文別: | 中文 |
| 論文頁數: | 126 |
| 中文關鍵詞: | 金屬發泡材 、高溫型質子交換膜燃料電池 、流道設計 |
| 外文關鍵詞: | metal foam, HT-PEM fuel cell, flow channel |
| 相關次數: | 點閱:22 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究探討金屬發泡材在不同壓縮量之滲透率、孔徑大小與孔隙率等物理特性,並將研究之發泡材應用於高溫型質子交換膜燃料電池,藉由使用不同壓縮量之發泡材與流道設計之搭配,來了解對電池性能之影響,以及針對反應氣體背壓、空氣當量比、加濕與操作溫度等參數研究,分析電池性能的變化。最終目的是找到提升電池性能之方法。
研究結果顯示,在金屬發泡材的物理特性實驗中,能得出在低流速下,滲透率與壓縮率之關係呈非線性,其關係圖和孔洞面積與壓縮率之關係圖相似,表示滲透率與孔洞面積之關係連結。而在燃料電池研究上,指出較高的發泡材凸出量造成電池性能在高負載下衰退,因其金屬肋填充了觸媒層,反應氣體不易導入,讓水氣排出;發泡材深度變動對電池性能未有提升效果,但搭配適當導流設計能有效提升性能,以發泡材深度加厚及進出口導流加大加寬之設計搭配最佳,與單純對發泡材加厚有18.4 %的提升幅度;在參數討論之結果顯示提高背壓、空氣當量比、加濕與操作溫度皆能提升燃料電池,但加濕測試結果指出太高的加濕將對電池產生反效果。
In this research, the metal foam physical properties of different compressed thicknesses such as permeability, pore size and porosity were measured. Then, these metal foams were applied and matched with different types of flow channel on the high temperature proton exchange membrane fuel cell. Then, these fuel cells did the polarization tests and electrochemical impedance spectrum tests to realize the effect of metal foams and flow channel. Moreover, the operating parameters such as back pressure, air stoichiometry, humidification and temperature were tested to analysis the effects of fuel cell. Finally, the purpose of this study is finding the ways to improve the fuel cell.
The results show that the relation between the permeability and compressed ratio are not linear in low mass flow rate at the measurement of metal foam physical properties. In addition, this relation is similar to the relation between porous area and compressed ratio. Then, it also shows the relation between permeability and porous area. The results of fuel cells show that the higher amount of metal foam protrusion has significantly declining the performance of fuel cell during higher loading operation. The reason is that reaction gas doesn’t easily flow into the catalyst layer to exhaust vapor by some parts of catalyst pores filling up metal foam ribs. Then, the thickness of metal foam does not improve the fuel cell performance but matching with appropriated flow channel make the fuel cell performance increase. The metal foams matched with bigger inlet and outlet channel width has the best performance which is 18.4 % higher than the origin flow channel. Finally, the parameters test show that increasing back pressure, air stoichiometry, humidification and temperature can improve fuel cell performance. However, the higher humidification may make the fuel cell performance decrease.
[1] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report”, Fuel Cell Today, 2011.
[2] K. Kordesch, G. Simader, “Fuel Cells and Their Applications,” VCH Weinheim, 1996.
[3] J. J. Sumner, S. E. Creager,t J. J. Ma and D. D. DesMarteau, “Proton conductivity in Nafion® 117 and in a novel bis[(perfluoroalkyl)sulf onyl]imide ionomer membrane”, J. Electrochem. Soc., Vol. 145, No. 1, 1998.
[4] Y. L. Ma, J. S. Wainright, M. H. Litt, and R. F. Savinell, “Conductivity of PBI membranes for high-temperature polymer electrolyte fuel cells”, J. Electrochem. Soc, Vol. 151, pp. A8-A16, 2004.
[5] J. A. Asensio, S. Borrós, P. Gómez-Romero, “Proton-conducting membranes based on poly(2,5-benzimidazole)(ABPBI) and phosphoric acid prepared by direct acid casting”, Journal of Membrane Science, Vol. 241, pp. 89-93, 2004.
[6] X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhanga, D. Song, Z. S. Liu, H. Wang and J. Shen, “A review of PEM hydrogen fuel cell contamination: Impacts, mechanisms, and mitigation”, J. Power Sources, Vol. 165, pp. 739-756, 2007.
[7] 黃鎮江,燃料電池,全華科技圖書股份有限公司,2005.
[8] P. Moçotéguy, B. Ludwig, J. Scholta, R. Barrera and S. Ginocchio, “Long term testing in continuous mode of HT-PEMFC based H3PO4/PBI Celtec-P MEAs for μ-CHP Applications”, Fuel Cell, Vol. 9, pp. 325-348, 2008.
[9] S. J. Andreasen, J. R. Vang and S. K. Kær, “High temperature PEM fuel cell performance characterization with CO and CO2 using electrochemical impedance spectroscopy”, Int. J. Hydrogen Energy, Vol. 36, pp. 9815-9830, 2011.
[10] K. Wippermann, C. Wannek, H. F. Oetjen, J. Mergel and W. Lehnert, “Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters”, J. Power Sources, Vol. 195, pp. 2806-2809, 2010.
[11] C. J Tseng, B. T. Tsai, Z. S. Liu, T. C. Cheng, W. C. Chang and S. Kun. Lo, “A PEM fuel cell with metal foam as flow distributor”, Energy Conversion and Management, Vol. 62, pp. 14-21, 2012.
[12] B. T. Tsai, C. J. Tseng, Z. S. Liu, C. H. Wang, C. I. Lee, C. C. Yang and Shih-Kun Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor ”, Int. J. Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[13] O. J. Murphy, A. Cisar, and Clarke, “Low-cost light weight high power density PEM fuel cell stack”, Electrochimica Acta, Vol. 43, pp. 3829-3840, 1998.
[14] M. A. Dawson, J. T. Germaine and L. J. Gibson, “Permeability of open-cell foams under compressive strain”, International Journal of Solids and Structures, Vol. 44, pp. 5133–5145, 2007.
[15] A. Kumar, R. G. Reddy, “Modeling of polymer membrane fuel cell with metal foam in the floe-field of the bipolar/end plates”, J. Power Sources, Vol. 114, pp. 54-62, 2003.
[16] J. Kim, N. Cunningham, “Development of porous carbon foam polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 195, pp. 2291-2300, 2010.
[17] B. P. Muljadi, M. J. Blunt, A. Q.Raeini and B. Bijeljic, “The impact of porous media heterogeneity on non-Darcy flow behavior from pore-scale simulation”, Advances in Water Resources, Vol. 0, pp. 1-12, 2015.
[18] J. Zhang, Y. Tang, C. Song and J. Zhang, “Polybenzimidazole-membrane-based PEM fuel cell in the temperature range of 120–200 oC”, J. Power Sources, Vol. 172, pp. 163–171, 2007.
[19] S. Galbiati, A. Baricci, A. Casalegno, G. Carcassola and R. Marchesi, “On the activation of polybenzimidazole-based membrane electrode assemblies doped with phosphoric acid”, Int. J. Hydrogen Energy, Vol. 37, pp. I4475-I4481, 2012.
[20] B. Xing, O. Savadogo, “The effect of acid doping on the conductivity of polybenzimidazole(PBI)”, J. New Mater. Electrochem. Syst., Vol. 2, pp. 95-101, 1999.
[21] M. G. Waller, M. R. Walluk and T. A. Trabold, “Performance of high temperature PEM fuel cell materials. Part 1: Effects of temperature, pressure and anode dilution”, Int. J. Hydrogen Energy, Vol. 41, pp. 2944-2954, 2016.
[22] E. U. Ubong, Z. Shi and X. Wang, “Three-dimensional modeling and experimental study of a high temperature PBI-based PEM fuel cell”, J. Electrochem. Soc., Vol. 156, pp. B1276-B1282, 2009.
[23] F. Liu, M. Kvesi´c, K. Wippermann, Uwe Reimer and Werner Lehnerta, “Effect of spiral flow field design on performance and durability of HT-PEFCs”, J. Electrochem. Soc., Vol. 160, pp. F892-F897, 2013.
[24] J. Lobato, P. Cañizares, M. A. Rodrigo, F. J. Pinar and D. Úbeda, “Study of flow channel geometry using current distribution measurement in a high temperature polymer electrolyte membrane fuel cell”, J. Power Sources, Vol. 196, pp. 4209-4217, 2011.
[25] S. H. Eberhardt, M. Toulec, F. Marone, M. Stampanoni, F. N. Büchi and T. J. Schmidta, “Dynamic operation of HT-PEFC: In-operando imaging of phosphoric acid profiles and (re)distribution”, J. Electrochem. Soc., Vol. 162, pp. F310-F316, 2015.
[26] S. H. Eberhardt, T. Lochner, F. N. Büchi and T. J. Schmidta, “Correlating electrolyte inventory and lifetime of HT-PEFC by accelerated stress testing”, J. Electrochem. Soc., Vol. 162, pp. F1367-F1372, 2015.
[27] J. L. Jespersen, E. Schaltzb and S. K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell”, J. Power Sources, Vol. 191, pp. 289-296, 2009.
[28] C. Beer, P. S. Barendse, P. Pillay, B. Bullecks and R. Rengaswamy, “Classification of high-temperature PEM fuel cell degradation mechanisms using equivalent circuits”, IEEE Transactions on Industrial Electronics, Vol. 62, pp. 5265-5274, 2015.
[29] M. Mamlouk, K. Scott, “Analysis of high temperature polymer electrolyte membrane fuel cell electrodes using electrochemical impedance spectroscopy”, Electrochimica Acta, Vol. 56, pp. 5493–5512, 2011.
[30] M. S. Kondratenko, M. O. Gallyamov and A. R. Khokhlov, “Performance of high temperature fuel cells with different types of PBI membranes as analysed by impedance spectroscopy”, Int. J. Hydrogen Energy, Vol. 37, pp. 2596-2602, 2012.
[31] N. H. Jalani, M. Ramanib, K. Ohlsson, S. Buelte, G. Pacifico, R. Pollard, R Staudt and R. Datta, “Performance analysis and impedance spectral signatures of high temperature PBI–phosphoric acid gel membrane fuel cells”, J. Power Sources, Vol. 160, pp. 1096-1103, 2006.
[32] R. O’Hayre, W. S. Cha, W. Colella, F.B. Prinz, “Fuel cell fundamentals”, Wiley, 2005.
[33] 蔡秉蒼,「應用金屬發泡材為流道之質子交換膜燃料電池之研究」,國立中央大學能源工程研究所博士論文,2012.