跳到主要內容

簡易檢索 / 詳目顯示

研究生: 何冠霖
Kuan-Lin, Ho
論文名稱: 氮化矽微環型干涉儀製程與穿透頻譜調製
Silicon nitride micro-ring interferometer fabrication and transmission spectrum modulation.
指導教授: 王培勳
Pei-Hsun Wang
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 104
中文關鍵詞: 氮化矽干涉儀消光比微環形共振腔
外文關鍵詞: silicon nitride, inteferometer, extinction ratio, Microring resonator
相關次數: 點閱:16下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著科技技術發展,人類對於通訊技術與計算頻寬的逐漸變高,急切需要一個低能耗、高帶寬的技術來取代銅導線在傳輸之間的損耗。矽光子技術得益於與CMOS製程技術的高度結合,與其高帶寬、低損耗的優勢。在未來與AI應用還有晶片內連接技術上是強力之競爭者。因此本論文研究為矽光子元件之一的微環形共振腔之衍生結構,為微環形共振腔干涉儀。且此論文側重點在於結構造成之消光比提升。 雖然微環形共振腔在模擬上也可以達到非常深之消光比,但是受限於其元件之耦合強度,在實際製程上並無法見證其高消光比之傳遞頻譜,這也是本論文選用此結構之原因。
    首先在模擬上會先使用時預有限差分法(FDTD)對微小尺度之結構進行模擬,確認傳遞特徵後使用數值模擬的方式進行後續大尺度之結構模擬。本論文透過兩種模擬工具模擬出大尺度結構之傳遞場型,探討不同結構長度、耦合因數,對於消光比之影響。並模擬出在不同等效折射率下最終傳遞場型的消光比變化。且可以使用調製器對於特定波長之共振峰進行開關與消光比之調製。此結構與其調變器之使用能進一步提升在同一試片上之光學通訊上之遠距離訊號之傳遞品質,與光學偵測器、傳感器上的探測精度。
    元件製程的部分,本論文選擇氮化矽作為波導材料,使用i-line Stepper步進式曝光機進行光學微影製程。 在優化製程後實現高品質因子之試片,且也透過全片製程驗證了大量生產之可能性。 量測部分本論文使用1550 nm之光通訊波段進行傳遞頻譜之分析,驗證了本論文在模擬部分之消光特性。最後本論文也研究如何提升環腔品質,驗證了一些細小微結構對於品質因子之提升,可以達到50%。 透過調製器之作用讓本論文得到相比於無調製器結果,有調製器的結構讓本論文的消光比提升了16 dB。總體達到35 dB之消光值,且本論文也在模擬上見證了4串聯結構之80 dB消光元件。利用此元件特性可以讓本論文在通訊與感測領域有更多應用。
    使用i-line Stepper步進式曝光機進行微影製程能讓本論文達到大量生產且耗費成本相較於現行之DUV 、EUV深紫外光掃描式曝光機低。且能生產出不錯之高品質因子試片。此給予本論文一種除了成本低廉之接觸式曝光機,與時間花費成本高之掃描式電子直寫系統設備之外的一個選擇性。


    This thesis focuses on a derivative structure of silicon photonic devices, specifically the microring resonator interferometer, which is a strong contender for future applications in AI and on-chip interconnect technologies due to its high bandwidth and low loss advantages, as well as its high integration with CMOS process technology. The emphasis of this paper is on the enhancement of the extinction ratio( ER) caused by the structure. Although microring resonators can achieve a very deep extinction ratio in simulations, the high extinction ratio of the transmission spectrum cannot be witnessed in actual processes due to the limited coupling strength of the components, which is why we chose this structure.

    Initially, the Finite-Difference Time-Domain (FDTD) method is used for simulating small-scale structures to confirm their transmission characteristics, followed by numerical simulations for larger-scale structures. We use two simulation tools to model the transmission field patterns of large-scale structures, exploring the impact of different structure lengths and coupling factors on the extinction ratio. We also simulate the changes in the extinction ratio of the final transmission field pattern under different refractive indices. Modulators can be used to switch and modulate the extinction ratio of specific resonant peaks. This structure and its modulators can further enhance the quality of long-distance signal transmission in optical communications on the same wafer, as well as the detection precision of optical detectors and sensors.

    For the component process, this paper chooses silicon nitride as the waveguide material and uses an i-line Stepper photolithography machine for the optical lithography process. After process optimization, high-quality factor samples are realized, and the feasibility of mass production is verified through full-wafer processing. For the measurement part, we use the 1550 nm optical communication band to analyze the transmission spectrum, verifying the extinction characteristics predicted in our simulations. Finally, we study how to improve the quality of the ring cavity, verifying that some fine microstructures can increase the quality factor by up to 50%. Through the action of the modulator, we achieved an extinction ratio improvement of 16 dB compared to the unmodulated structure, reaching a total of 35 dB. We also witnessed in simulations an 80 dB extinction component of 4 cascaded structures. The characteristics of this component can enable more applications in the fields of communication and sensing.

    Using the i-line Stepper photolithography machine for the lithography process allows us to achieve mass production at a lower cost compared to current DUV and EUV deep ultraviolet scanning lithography machines. It also produces high-quality factor samples. This gives us an alternative to the low-cost contact lithography machines and the high time-cost scanning electron beam direct writing systems.

    摘要 IV Abstract V 致謝 VIII 目錄 IX 圖目錄 XII 表目錄 XVI 第一章 緒論 1 1-1 氮化矽微環型干涉儀共振腔 7 1-2 論文概要 13 1-3 馬赫.曾德爾干涉儀 14 1-4 文獻回顧 16 1-5 論文架構 19 第二章 干涉長度模擬 20 2-1 氮化矽微環型干涉儀 20 2-2 本論文使用之模擬工具介紹 24 2-3 模擬結果比較 28 2-4 4-Stage型消光調變 36 2-5 氮化矽微環型干涉儀等效折射調變 39 第三章 使用i-line曝光機製造干涉儀結構與熱調變器調製 44 3-1 光罩設計 44 3-2 光學微影與蝕刻製程 45 3-2-1 金屬氧化物製程 54 3-3光學量測 55 3-3-1 量測架構 55 3-4 晶片上微型結構對於環形共振腔品質因子之影響 61 3-4-1 晶片上微型結構設計 61 3-4-2 結果比較 62 3-5全片製程之嘗試 62 第四章 量測與分析 64 4-1 量測結果分析 64 4-1-1 環腔(La )熱調變 72 4-1-2 干涉臂(Lb )熱調變 75 4-2 最佳之氧化層疊加結果 79 第五章 結論與展望 81 參考文獻 84

    [1] A. Rickman, "The commercialization of silicon photonics," Nature Photonics, vol. 8, no. 8, pp. 579-582, 2014.
    [2] Z. Zhou, B. Yin, and J. Michel, "On-chip light sources for silicon photonics," Light: Science & Applications, vol. 4, no. 11, pp. e358-e358, 2015.
    [3] G. Roelkens, L. Liu, D. Liang, R. Jones, A. Fang, B. Koch, and J. Bowers, "III‐V/silicon photonics for on‐chip and intra‐chip optical interconnects," Laser & Photonics Reviews, vol. 4, no. 6, pp. 751-779, 2010.
    [4] C. Kopp et al., "Silicon photonic circuits: on-CMOS integration, fiber optical coupling, and packaging," IEEE Journal of selected topics in quantum electronics, vol. 17, no. 3, pp. 498-509, 2010.
    [5] A. Sun, A. Yan, P. Luo, J. Zhang, and N. Chi, "Silicon Photonic Integrated Reservoir Computing Processor with Ultra-high Tunability for High-speed IM/DD Equalization," in 2022 IEEE 7th Optoelectronics Global Conference (OGC), 2022: IEEE, pp. 227-230.
    [6] R. Soref, "The past, present, and future of silicon photonics," IEEE Journal of selected topics in quantum electronics, vol. 12, no. 6, pp. 1678-1687, 2006.
    [7] P. K. Sahoo, S. Sarkar, and J. Joseph, "High sensitivity guided-mode-resonance optical sensor employing phase detection," Scientific reports, vol. 7, no. 1, p. 7607, 2017.
    [8] R. Blum, "Integrated silicon photonics for high-volume data center applications," Optical Interconnects XX, vol. 11286, pp. 141-149, 2020.
    [9] M. K. Park et al., "Label-free aptamer sensor based on silicon microring resonators," Sensors and Actuators B: Chemical, vol. 176, pp. 552-559, 2013.
    [10] C.-Y. Chao, W. Fung, and L. J. Guo, "Polymer microring resonators for biochemical sensing applications," IEEE journal of selected topics in quantum electronics, vol. 12, no. 1, pp. 134-142, 2006.
    [11] S. Xie, S. Veilleux, and M. Dagenais, "On-chip high extinction ratio single-stage mach-zehnder interferometer based on multimode interferometer," IEEE Photonics Journal, vol. 14, no. 4, pp. 1-6, 2022.
    [12] Y. Xuan et al., "High-Q silicon nitride microresonators exhibiting low-power frequency comb initiation," Optica, vol. 3, no. 11, pp. 1171-1180, 2016.
    [13] C. Xiang, W. Jin, and J. E. Bowers, "Silicon nitride passive and active photonic integrated circuits: trends and prospects," Photonics Research, vol. 10, no. 6, pp. A82-A96, 2022.
    [14] W. Bogaerts et al., "Silicon microring resonators," Laser & Photonics Reviews, vol. 6, no. 1, pp. 47-73, 2012.
    [15] N. Hegedüs, K. Balázsi, and C. Balázsi, "Silicon nitride and hydrogenated silicon nitride thin films: A review of fabrication methods and applications," Materials, vol. 14, no. 19, p. 5658, 2021.
    [16] L. Chrostowski and M. Hochberg, Silicon photonics design: from devices to systems. Cambridge University Press, 2015.
    [17] D. T. Spencer, J. F. Bauters, M. J. Heck, and J. E. Bowers, "Integrated waveguide coupled Si3N4 resonators in the ultrahigh-Q regime," Optica, vol. 1, no. 3, pp. 153-157, 2014.
    [18] D. Dai, B. Yang, L. Yang, Z. Sheng, and S. He, "Compact microracetrack resonator devices based on small SU-8 polymer strip waveguides," IEEE photonics technology letters, vol. 21, no. 4, pp. 254-256, 2009.
    [19] E. S. Hosseini, S. Yegnanarayanan, A. H. Atabaki, M. Soltani, and A. Adibi, "Systematic design and fabrication of high-Q single-mode pulley-coupled planar silicon nitride microdisk resonators at visible wavelengths," Optics express, vol. 18, no. 3, pp. 2127-2136, 2010.
    [20] M. A. Butt, A. Kaźmierczak, N. L. Kazanskiy, and S. N. Khonina, "Metal-insulator-metal waveguide-based racetrack integrated circular cavity for refractive index sensing application," Electronics, vol. 10, no. 12, p. 1419, 2021.
    [21] L. Chrostowski et al., "Schematic driven silicon photonics design," in Smart Photonic and Optoelectronic Integrated Circuits XVIII, 2016, vol. 9751: SPIE, pp. 9-22.
    [22] D. Yuan, Y. Dong, Y. Liu, and T. Li, "Mach-Zehnder interferometer biochemical sensor based on silicon-on-insulator rib waveguide with large cross section," Sensors, vol. 15, no. 9, pp. 21500-21517, 2015.
    [23] W. Zhou, S. Slivken, and M. Razeghi, "Phase-locked, high power, mid-infrared quantum cascade laser arrays," Applied Physics Letters, vol. 112, no. 18, 2018.
    [24] P. Morrissey, H. Yang, R. Sheehan, B. Corbett, and F. Peters, "Design and fabrication tolerance analysis of multimode interference couplers," Optics Communications, vol. 340, pp. 26-32, 2015.
    [25] Y. Du, K. Su, X. Yuan, T. Li, K. Liu, H. Man, and X. Zou, "Implementation of optical neural network based on Mach–Zehnder interferometer array," IET Optoelectronics, vol. 17, no. 1, pp. 1-11, 2023.
    [26] M. Jin, J.-Y. Chen, Y. M. Sua, and Y.-P. Huang, "High-extinction electro-optic modulation on lithium niobate thin film," Optics letters, vol. 44, no. 5, pp. 1265-1268, 2019.
    [27] S. Liu et al., "High speed ultra-broadband amplitude modulators with ultrahigh extinction> 65 dB," Optics express, vol. 25, no. 10, pp. 11254-11264, 2017.
    [28] C. M. Wilkes et al., "60 dB high-extinction auto-configured Mach–Zehnder interferometer," Optics letters, vol. 41, no. 22, pp. 5318-5321, 2016.
    [29] S. Wang and D. Dai, "Polarization-insensitive 2× 2 thermo-optic Mach–Zehnder switch on silicon," Optics letters, vol. 43, no. 11, pp. 2531-2534, 2018.
    [30] D. Zheng, J. D. Doménech, W. Pan, X. Zou, L. Yan, and D. Pérez, "Low-loss broadband 5× 5 non-blocking Si3N4 optical switch matrix," Optics Letters, vol. 44, no. 11, pp. 2629-2632, 2019.
    [31] F. Duan, K. Chen, D. Chen, and Y. Yu, "Low-power and high-speed 2× 2 thermo-optic MMI-MZI switch with suspended phase arms and heater-on-slab structure," Optics Letters, vol. 46, no. 2, pp. 234-237, 2021.
    [32] T. Kita and M. Mendez-Astudillo, "Ultrafast silicon MZI optical switch with periodic electrodes and integrated heat sink," Journal of Lightwave Technology, vol. 39, no. 15, pp. 5054-5060, 2021.
    [33] R. Zhu, X. Zhou, N. Yang, L. Leng, and W. Jiang, "Towards high extinction ratio in silicon thermo-optic switches—Unravelling complexity of fabrication variation," IEEE Photonics Journal, vol. 10, no. 4, pp. 1-8, 2018.
    [34] A. Rao, G. Moille, X. Lu, D. Westly, M. Geiselmann, M. Zervas, and K. Srinivasan, "Up to 50 dB extinction in broadband single-stage thermo-optic Mach-Zehnder interferometers for programmable low-loss silicon nitride photonic circuits," in CLEO: Science and Innovations, 2021: Optica Publishing Group, p. SM1A. 7.
    [35] Y. Zhao, X. Wang, D. Gao, J. Dong, and X. Zhang, "On-chip programmable pulse processor employing cascaded MZI-MRR structure," Frontiers of Optoelectronics, vol. 12, pp. 148-156, 2019.
    [36] J. Song et al., "On-chip quasi-digital optical switch using silicon microring resonator-coupled Mach-Zehnder interferometer," Optics Express, vol. 21, no. 10, pp. 12767-12775, 2013.
    [37] Y. Yuan et al., "A 100 Gb/s PAM4 two-segment silicon microring resonator modulator using a standard foundry process," ACS Photonics, vol. 9, no. 4, pp. 1165-1171, 2022.
    [38] H. C. Frankis, K. M. Kiani, D. Su, R. Mateman, A. Leinse, and J. D. Bradley, "High-Q tellurium-oxide-coated silicon nitride microring resonators," Optics Letters, vol. 44, no. 1, pp. 118-121, 2019.
    [39] L. Zhou and A. W. Poon, "Electrically reconfigurable silicon microring resonator-based filter with waveguide-coupled feedback," Optics express, vol. 15, no. 15, pp. 9194-9204, 2007.
    [40] J. Feng, R. Akimoto, Q. Hao, and H. Zeng, "Three-dimensional cross-coupled silicon nitride racetrack resonator-based tunable optical filter," IEEE Photonics Technology Letters, vol. 29, no. 9, pp. 771-774, 2017.
    [41] S. Feng and A. W. Poon, "Silicon feedback-microring electro-optical switches with integrated surface-state-absorption linear photocurrent monitors," in CLEO: QELS_Fundamental Science, 2013: Optica Publishing Group, p. JTu4A. 43.
    [42] G. Guan et al., "Numerical investigation of on-chip multi-gas sensing using a low-repetition-frequency microcavity Kerr comb with backward interference structure," Journal of Lightwave Technology, 2023.
    [43] X. Xue et al., "Thermal tuning of Kerr frequency combs in silicon nitride microring resonators," Optics express, vol. 24, no. 1, pp. 687-698, 2016.
    [44] A. Arbabi and L. L. Goddard, "Measurements of the refractive indices and thermo-optic coefficients of Si3N4 and SiOx using microring resonances," Optics letters, vol. 38, no. 19, pp. 3878-3881, 2013.
    [45] P.-H. Wang, H.-C. Liu, H.-Y. Chen, Y.-X. Zhong, and K.-H. Chen, "CMOS-Compatible Silicon Etched U-Grooves With Groove-First Fabrication for Nanophotonic Applications," IEEE Photonics Technology Letters, vol. 34, no. 22, pp. 1230-1233, 2022.
    [46] C. Yang and J. Pham, "Characteristic study of silicon nitride films deposited by LPCVD and PECVD," Silicon, vol. 10, pp. 2561-2567, 2018.
    [47] K. Wu and A. W. Poon, "Stress-released Si3N4 fabrication process for dispersion-engineered integrated silicon photonics," Optics Express, vol. 28, no. 12, pp. 17708-17722, 2020.
    [48] K. Wu, Q. Zhang, and A. W. Poon, "Integrated Si3N4 microresonator-based quantum light sources with high brightness using a subtractive wafer-scale platform," Optics Express, vol. 29, no. 16, pp. 24750-24764, 2021.

    QR CODE
    :::