跳到主要內容

簡易檢索 / 詳目顯示

研究生: 劉盈麟
Ying-Lin Liu
論文名稱: OFDM Symbol Boundary Detection and Carrier Synchronization in DVB-T Baseband Receiver Design
地面數位電視廣播接收機之符元邊界檢測和載波同步設計
指導教授: 薛木添
Muh-Tian Shiue
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 94
語文別: 英文
論文頁數: 51
中文關鍵詞: 數位電視載波頻率偏移同步符元邊界
外文關鍵詞: DVB -T, synchronization, symbol boundary, carrier freqeuncy offset
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在這篇論文中將展示二種在數位電視廣播系統的基頻器接器的同步迴路。其
    中一個是符元邊界偵測,而另一個是載波頻率偏移回復迴路。在符元邊界偵測的
    部份,我們將介紹一種修改過的最大可能偵測預測。我們修改了一些實現的方
    法,使得些同步手段可以被現代的超大型積體電路科技給實現,而且有著較低的
    複雜度。這也會為我們帶來二個好處,就是縮小記憶體的使用量,另外一個就是
    有比較快的偵測速度。
    在載波頻率偏移回復的部份,我們整合了三種不同的演算法,分別是最大可
    能偵測、防護頻帶功率偵測(Guard Band Power Detection)和後快速傅立葉轉換
    (post-FFT)載波頻率追蹤。加上我們適當的修改之後,這些演算法可以使用部份
    跟符元邊界相同的硬體,只是要加上一點點額外的控制電路(例如有限狀態機)。
    在加上這兩個修改過的演算法之後,這個基頻接受器可以抵抗符元邊界偏移與載
    波頻率偏移而不需要很大的硬體成本。


    In this thesis, we demonstrate two synchronization loops in DVB-T baseband receive. One is
    symbol boundary detection and the other is carrier freqeuncy offset recovery loop. We introduce
    a modified maximum likelihood estimation in boundary detection loop. We modify some
    implemation methods, thus it can be realized by morden VLSI technology with less complexity.
    And it has two benefits less memory usage and fast detection speed.
    In carrier frequency offset recovery, we integrate three different algorithms. Which are
    maximum likelihood estimation, guard band power detection and post-FFT carrier freqeuncy
    tracking. By applying our modification, these algorithms can sharing the same hardware of
    boundary detection. Thus just a little additional circuits are needed (ex. finite state machines).
    The baseband receiver can resist symbol boundary offset and carrier freuquency offset by using
    these two modified algorithms without heavy implemation cost.

    Chapter 1 Introduction 1 1.1 Digital Television Broadcasting in Taiwan . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 Chapter 2 OFDM Systems and DVB-T Standard Overview 3 2.1 Concept of OFDM Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.2 Modulation and Demodulation . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1.3 Channel Effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2 DVB-T Standard . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.1 Transmission Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.2 Cyclic Prefix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 2.2.3 Reference Signals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 Chapter 3 Synchronization in DVB-T System 14 3.1 Synchronization Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.2 Boundary Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.1 Impacts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2.2 Boundary Detection Strategy . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.2.3 Channel Effect of Boundary Detection . . . . . . . . . . . . . . . . . . . . 20 3.2.4 Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.3 Carrier Frequency Offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.1 CFO Effects for OFDM Systems . . . . . . . . . . . . . . . . . . . . . . . 22 3.3.2 Fractional CFO Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 3.3.3 Integer CFO Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 3.3.4 Residual CFO Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.4 Other Synchronization Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 3.4.1 Sampling Clock offset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31 Chapter 4 Implementation 33 4.1 Delay Line for Boundary Detection . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.1 Propose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.1.2 Design Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4.2 Moving Sum Circuit Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2.1 Design Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.3 COordinate Rotation Digital Computer . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.1 Concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.3.2 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.3.3 CORDIC Application in Synchronization Design . . . . . . . . . . . . . . 41 4.3.4 Choosing Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 4.4 Boundary and Mode Decision Circuit Design . . . . . . . . . . . . . . . . . . . . 43 Chapter 5 Simulation Result 46 5.1 Boundary Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.2 CFO Compensation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 Chapter 6 Conclusion and Future Work 48 Bibliography 49

    [1] ”ETSI EN 300 744 V1.5.1 Digital Video Broadcasting (DVB) Framing structure, channel
    coding and modulation for digital terrestrial television”
    [2] Duˇsan Matiæ, ”OFDM as a possible modulation technique for multimedia applications in
    the range of mm waves”, 10/30/98/TUS-TVS.
    [3] Merouane Debbah, ”Short introduction to OFDM”, Dec 31, 2002.
    [4] S. B. Weinstein and P. M. Ebert, ”Data transmission by frequency-division multiplexing using
    the discrete Fourier transform.”, IEEE Trans. Commun., COM-19(5):628-634, Oct.1971.
    [5] A. Peled and A. Ruiz, ”Frequency domain data transmission using reduced computational
    complex algorithms.” In Proc. IEEE Int. Conf. Acoust., Speech, Signal Processing, Pages
    964-967, Denver, Co, 1980.
    [6] Hikmet Sari, Georges Karam, and Isabelle Jeanclaude, ”Transmission Techniques for Digital
    Terrestrial TV Broadcasting” IEEE Communications Magazine, February 1995
    [7] Jung-Jin Kim, Young-Jae Ryu, Hae-Sock Oh, and Dong-Seog Han ”Frame Selection Algorithm
    with Adaptive FFT Input for OFDM systems” IEEE 2002.
    [8] T. Pollet and M. Moenecaley, ”Synchronizability of OFDM signals.”, In Proc Globecom,
    volume 3, pages 2054-2058, Singapore, Nov. 1995.
    [9] T. Pollet, M. van Bladel, and M. Moeneclaey. ”BER sensitivity of OFDM systems to
    carier frequency offset and Wiener pahse noise.” IEEE Trans. Commum., 43(2/3/4):191-
    193, Feb/Mar/Apr 1995.
    [10] Ove Edfors, Magnus Sandell, Jan-Jaap van de Beek, Daniel Landstrom, Frank Sjoberg, ”An
    introduction to orthogonal frequency-division multiplexing” September 1996.
    [11] Magnus Sandell and Ove Edfors, ”A comparative study of pilot-based channel estimators
    for wireless OFDM”, September 1996.
    [12] Meng-han Hsieh and Che-Ho Wei, ”Channel Estimation for OFDM Systems Based on
    Comb-type Pilot Arrangement In Frequency Selective Fading Channels”
    [13] Fredrik Tufvesson and Torleiv Maseng, ”PILOT ASSISTED CHANNEL ESTIMATION
    FOR OFDM IN MOBILE CELLULAR SYSTEMS” 1997, IEEE.
    [14] ”Information technology - Generic coding of moving pictures and associated audio information”,
    ISO/IEC 13818 (Parts 1 to 3).
    [15] YRJO NEUVO amd WALTER H. KU, ”Analysis and Digital Realization of a Pseudorandom
    Gaussian and Impulsive Noise Source”, in IEEE transactions on communications, VOL.
    COM-23, NO. 9, SEP. 1975.
    [16] J. E. Volder, ”The CORDIC trigonometeic computing technique.”, IRE Trans. Electron.
    Comput. , vol. EC8, no.3, pp.330-334. Sept 1959.
    [17] Yu Hen Hu, ”The Quantization Effects of the CORDIC Algorithm”, IEEE Transactions on
    Signal Processing, VOL. 40, NO. 4, APRIL 1992.
    [18] Ray Andraka, ”A survey of CORDIC algorithms for FPGA based computers”.
    [19] Jan-Jaap van de Beek, Magnus Sandell, Per Ola Borjesson, ”ML Estimation of Time and
    Frequency Offset in OFDM systems”, IEEE Transactions on signal processing, VOL. 45,
    NO. 7, JULY 1997.
    [20] Paul H. Moose, ”A Technique for Orthogonal Frequency Division Multiplexing Frequency
    Offset Correction”, IEEE Transaction on communications, VOL. 42, NO. 10, OCT 1994.
    [21] Jai-Chin Lin, ”Maximum-Likelijood Frame Timing Instant and Frequency Offset Estimation
    for OFDM Communication Over a Fast Rayleigh-Fading Channel”, IEEE transactions
    on vehicular technology, VOL. 52, NO. 4, JULY 2003.
    [22] Boaz Porat, ”A Course in Digital Signal Processing”, John Wiley & Sons, Inc 1997.
    [23] Michael Speth, Stefan A. Fechtel, Gunnar Fock, and Heinrich Meyr, ”Optimum Receiver
    Design for Wireless Broad-Band Systems Using OFDM-Part I”, IEEE Transactions on communications,
    VOL. 47, NO. 11, NOV 1999.
    [24] Michael Speth, Stefan A. Fechtel, Gunnar Fock, and Heinrich Meyr, ”Optimum Receiver
    Design for OFDM-Based Broadband Transmission-Part II: A Case Study”, IEEE Transactions
    on communications, VOL. 49, NO. 4, April 2001.
    [25] Flavio Daffara and Ottavio Adami, ”A New Freqeuncy Detector for Orthogonal Multicarrier
    Transmission Techniques”, Proc. of VTC, pp.804-809, 1995.
    [26] Dong-Kyu Kim, Sang-Hyun Do, Hyun-Kyu Lee, and Hyung-Jin Choi, ”Performance of th
    Frequency Detectors for Orthogonal Frequency Division Multiplexing.”, IEEE Transactions
    on Consumer Electronics, Vol. 43, No. 3, Aug 1997.
    [27] F. Classen and H Meyr, ”Freqeuncy Synchronization Algorithm for OFDM Systems Suitable
    for Communication Over Frequency Selective Fading Channels.”, Proc. of VTC, pp. 1655-
    1659, 1994.
    [28] Hiroshi Nogami and Toshio Nagashima, ”A Freqeuncy and Timing Period Acquisition Technique
    for OFDM Systems.”, Proc. of PIMRC. pp. 1010-1015, 1995.

    QR CODE
    :::