| 研究生: |
楊賀凱 Her-Kai Yang |
|---|---|
| 論文名稱: |
骨釘數量與位置 影響 股骨互鎖式骨板力學行為 之研究 Effect of screw number and position on mechanical behavior of a femoral locking plate |
| 指導教授: | 鍾禎元 |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2019 |
| 畢業學年度: | 107 |
| 語文別: | 中文 |
| 論文頁數: | 135 |
| 中文關鍵詞: | 遠端股骨骨折 、有限元素分析 、基因演算法 、部分因子設計法 、迴歸分析法 |
| 相關次數: | 點閱:10 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
股骨骨折一般醫療方法為植入骨板與骨釘,為了減少患者之負擔與醫院所花之時間成本,本研究依據實體骨板與骨釘樣品建立模擬模型,並進行最佳化分析來減少可能損耗之成本。模擬模型使用COMSOL Multiphysics多物理場耦合軟體進行有限元素分析;實體模型使用實際Sawbones樣品與MTS Criterion 43靜態萬能材料試驗機進行實體試驗,考慮緩慢下壓(3、4、5 mm/min)之受力形式,從中探討含植體之股骨位移與應變之力學研究,並將模擬結果與實驗結果進行驗證,結果證明模擬模型具有一定可靠性。
利用此模擬模型進行股骨骨折之骨釘數量與位置的最佳化分析,其方法分為基因演算法與部分因子設計法之迴歸分析,因子為股骨髁處六根骨釘,其編碼符號為A至F,並依據醫師的經驗法則與降低應力屏蔽效應設置限制條件與目標函數。根據基因演算法之分析結果可知,拿掉骨釘A與D時可得骨板最大應力的最小值;迴歸分析法之結果可得一個多項式來取代繁雜的有限元素分析,並可知各骨釘對骨板應力之顯著性,其預測需拿掉之骨釘也與基因演算法相同。從上述結果可知此骨折模型之最佳骨釘位置與骨板的應力分布,由此提供醫師術前規劃的初步參考資訊。
A common medical treatment for femoral fracture is the implantation of bone plates and screws. To reduce patients’ burden and hospitals’ time cost, this study constructed a simulation model according to bone plate and screws samples and performed optimization analysis to reduce potential costs. The simulation model is the CAD model of Sawbones, and the finite element analysis was performed using COMSOL Multiphysics software; the experimental model is the actual Sawbones sample, and the solid mechanics was performed by using MTS Criterion 43. Considering the force of downward pressure (3,4,5 mm/min) on femur, this study investigated the mechanics regarding the displacement and strain of femur with implants. Verification through the simulation and experimental results confirmed that the simulation model possessed satisfactory reliability.
The proposed simulation model was used to optimize the number of bone screws required in the femoral fracture model. The methods used were the genetic algorithm and regression analysis based on the fractional factorial design. The design variables are the six screws at femoral condyle. Their symbolic coding are A to F. The constraints and objective functions were set up by the surgeon’s rule of thumb and the stress shielding reduction. According to the results of the genetic algorithm, the minimum stress of the bone plate can be found when the screws A and D are removed. The results of the regression analysis can obtain a simple polynomial to replace the complicated finite element analysis, and the significance of each screws to the stress of the bone plate can be known. This method predicts the screws which need to be removed is the same as the genetic algorithm. According to the analysis results of the femoral fracture model, the optimal number and location of screws at femoral condyle and the stress distribution of the bone plate can be known. It can provide preliminary reference information for clinicians before surgery.
[1] R. M. Deshmukh and S. S. Kulkarni, “A Review on Biomaterials in Orthopedic Bone Plate Application”, International Journal of Current Engineering and Technology, Vol.5, pp. 2587-2591, Aug 2015.
[2] Aparna G. Kadam, Sanjay A. Pawar, Smita A. Abhang, “A Review on Finite Element Analysis of Different Biomaterials used in Orthopedic Implantation”, International Research Journal of Engineering and Technology, Vol.4, Issue.4, Apr 2017.
[3] 高漢元,骨板與骨釘之參數模型應用於股骨骨折術前規劃,國立中央大學,碩士論文,民國106年。
[4] Muhammad Shahzad Masood, Atique Ahmad, Rizwan Alim Mufti, “Unconventional Modeling and Stress Analysis of Femur Bone under Different Boundary Condition”, International Journal of Scientific & Engineering Research, Vol.4, Issue 12, pp. 293-296, December 2013.
[5] Sandeep Das, Saroj Kumar Sarangi, “Finite Element Analysis of Femur Fracture Fixation Plates”, International Journal of Basic and Applied Biology, Vol.1, pp. 1-5, 2014.
[6] K.S.Zakiuddin, I.A.Khan, Roshni A. Hinge, “A review paper on biomechanical analysis of human femur”, international conference on Emerging trends in Engineering and Management Research, pp. 425-432, March 2016.
[7] Sandeep Kumar Parashar, Jai Kumar Sharma, “A review on application of finite element modelling in bone biomechanics”, Recent trends in Engineering and Material science, Vol.8, pp. 696-698, 2016.
[8] K.C. Nithin Kumar, Tushar Tandon, “Biomechanical stress analysis of a Human Femur bone using ANSYS”, 4th International Conference on Materials Processing and Characterization, Vol.2, pp. 2115-2120, 2015.
[9] P.S.R. Senthil Maharaja, R. Maheswaran, “Numerical Analysis of Fractured Femur Bone with Prosthetic Bone Plates”, International conference on design and manufacturing (icondm), pp. 1242-1251, 2013.
[10] Dr A Thimmana Gouda, Jagadish S P, “Evaluation of mechanical properties of existing material SS316L used as femur bone implant material”, International Journal of Innovative Research in Technology & Science, Vol.2, pp. 52-58, 2014.
[11] D. Amalraju Dr.A.K.Shaik Dawood, “Mechanical Strength Evaluation Analysis of Stainless Steel and Titanium Locking Plate for Femur Bone Fracture”, An International Journal of ESTIJ, Vol.2, pp. 381- 388, June 2012.
[12] Arpan Gupta, Kwong Ming Tse, “Finite Element Analysis on Vibration Modes of Femur Bone”, Proc. of Int. Conf. on Advances in Mechanical Engineering, pp. 827- 831, 2013.
[13] Mohd. Shahjad A. Sheikh Prof. A. P. Ganorkar, “Finite Element Analysis of Femoral Intramedullary Nailing”, Vol.2, pp. 1-8, Dec 2016.
[14] Keith L. Moore, Arthur F. Dalley, “Clinically Oriented Anatomy”, 5th, Hagerstown, 2009.
[15] Gartland, John J.著,基本骨科學,合記圖書出版社,臺北市,民國72年[1983]。
[16] http://www.medicalook.com/human_anatomy/organs/Thigh.html
[17] Ronald McRae著,楊榮森譯,Practical Fracture Treatment臨床骨折學,初版,Churchill Livingstone合記圖書出版社,臺北市,民國87年[1998]。
[18] 洪濬麒編著,骨科學:附93-99年歷屆考題,合記圖書出版社,臺北市,民國99年[2010]。
[19] David J. Dandy, Dennis J. Edwards原著,楊榮森編譯,基本骨科學與創傷學,初版,合記圖書出版社,臺北市,民國90年[2001]。
[20] R.Bruce Martin, “The effects of geometric feedback in the development of osteoporosis.” Journal of Biomechanics, Vol.5:447-455, 1972.
[21] Frost HM, “Wolff's Law and bone's structural adaptations to mechanical usage: an overview for clinicians.” Angle Orthod, Vol.3:175-188, 1994.
[22] Kotlanka RAMAKRISHNA, Idapalapati SRIDHAR, “Design of Fracture Fixation Plate for Necessary and Sufficient Bone Stress Shielding”, JSME International Journal Series C, Vol.47:1086-1094, 2004.
[23] Ching-Lung Tai, Weng-Pin Chen, “Comparison of Stress Shielding between Straight and Curved Stems in Cementless Total Hip Arthroplasty – An in vitro experimental study.” Journal of Medical and Biological Engineering, 24(4):177-181, 2004.
[24] Weng-Pin Chen, Ching-Lung Tai, “Comparison of Stress Shielding among Different Cement Fixation Modes of Femoral Stem in Total Hip Arthroplasty–A Three-Dimensional Finite Element Analysis.” Journal of Medical and Biological Engineering, 24(4):183-187, 2004.
[25] 林坤志,無骨水泥式股骨元件新設計概念之數值評估,國立陽明大學,碩士論文,民國94年。
[26] Moaveni, Saeed原著,陳新郁,林政仁譯,有限元素分析 : 理論與應用ANSYS,初版,臺灣培生教育出版,高立圖書發行,新科技總代理,臺北市,民國90年[2001]。
[27] 皮托科技股份有限公司編著,COMSOL Multiphysics CFD有限元素分析,初版,皮托科技,彰化市,民國103年[2014]。
[28] Daryl L. Logan, “A First Course in the Finite Element Method”, SI Version, 5th, Cl-Engineering, 2011.
[29] J. H. Holland, “Adaptation in Natural and Artificial System”, MIT Press, Cambridge, MA, USA, 1992.
[30] J. D. Bagley, “The behavior of adaptive systems which employ genetic and correlation algorithms,” Dissertation Abstracts International, Vol.28, no.12, 1967.
[31] J. H. Holland, “Adaptation in Natural and Artificial System”, Ann Arbor, MI: The University of Michigan Press, 1975.
[32] 林昇甫、徐永吉,遺傳演算法及其應用= Advanced design of experiments,初版,五南書局,臺北市,民國98年。
[33] H. Braun, “On solving travelling salesman problem by genetic algorithm”, Lecture Notes in Computer Science, Vol.3, no.4, pp.287-297, 1999.
[34] D. Whitley, T. Starkweather, “Scheduling problems and traveling salesman: the genetic edge recombination”, Morgan Kaufmann Publishers Inc. San Francisco, CA, USA, 1989.
[35] 葉怡成,實驗計劃法:製程與產品最佳化,初版,五南書局,臺北市,民國90年。
[36] Sawbones General Catalog, https://www.sawbones.com/wp/wp-content/uploads/2017/07/Gen-Catalog-ReVamp-V1.pdf
[37] 王明暄,電腦輔助長骨創傷手術板置放與模擬,國立中央大學,碩士論文,民國102年。
[38] R. Compton and J. Mason, Fatigue Strength of Zimmer Periarticular Locking Plates, I. Zimmer Biomet Holdings, 2009.
[39] L. D. Zardiackas, "Stainless Steels for Implants." Wiley Encyclopedia of Biomedical Engineering, 2006.
[40] A Dubov, S Y R Kim, S Shah, E H Schemitsch, R Zdero, and H Bougherara, “The biomechanics of plate repair of periprosthetic femur fractures near the tip of a total hip implant: the effect of cable-screw position”, Proc Inst Mech Eng Part H, Vol.225:857-865, 2011.
[41] Lyle D. Zsrdisckas, “Stainless steels for implants”, Wiley Encyclopedia of Biomedical Engineering, 2006.