跳到主要內容

簡易檢索 / 詳目顯示

研究生: 黃昶輔
Chang-Fu Huang
論文名稱: 考慮膠體加速放射性核種衰變鏈多成員核種遷移的數值模式發展
Development of Numerical Model for Colloid-Facilitated Transport of Multiple Members of a Radionuclide Decay Chain
指導教授: 陳瑞昇
Jui-Sheng Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 地球科學學院 - 應用地質研究所
Graduate Institute of Applied Geology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 96
中文關鍵詞: 放射性核種衰變鏈膠體裂隙-母岩系統數值模式有限差分法
外文關鍵詞: Radionuclide decay chain, Colloid, Fracture-matrix system, Numerical model, Finite difference method
相關次數: 點閱:22下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 相較於其他能源,核能提供了較無污染的乾淨能源,但也必須承擔核電廠運轉過程所產生的高階廢棄物的處置問題。然而,在興建高階廢棄物處置設施時產生的力學應力效應與高階廢棄物產生熱與輻射的效應可能會出現裂隙。這些裂隙會是放射性核種透過地下水外釋到生物圈主要的通道,且在裂隙中地下水常存在膠體。可移動膠體可吸附放射性核種並加速其傳輸。因此更真實了解放射性核種在裂隙-母岩系統的遷移行為對於高階廢棄物場址各階段的安全評估都相當重要。本研究發展出一個數值模式來模擬膠體與放射性核種衰變鏈多成員核種在裂隙-母岩系統中的傳輸。本模式採用的是使用有限差分法獲得的數值解,並撰寫成FORTRAN程式執行數值模式的計算。結果表明膠體會加速放射性核種衰變鏈多成員核種傳輸。接著用來探討膠體濃度的時間與空間變化對放射性核種衰變鏈多成員核種傳輸的影響,發現在250年前若沒考慮膠體濃度的時間與空間變化將會高估放射性核種衰變鏈多成員核種的傳輸。此外,模型也用於計算高階廢棄物深層地質處置場安全評估的劑量率。該模型考慮了膠體濃度的變化,將可增加高階廢棄物深層地質處置場安全評估的信賴度。


    Compared with other energy sources, nuclear energy provides clean energy with less contaminant, but it also has to deal with the disposal of high-level waste (HLW) generated during the operation of nuclear power plants. However, the fractures may appear due to the mechanical stress created during the construction of deep geological disposal facilities and thermal and radiation effects due to the presence of HLW. These fractures will be the main pathway for the release of radionuclides to the biosphere through groundwater, and colloids often exist in the groundwater in the fractures. Mobile colloids can sorb radionuclides and facilitate their transport. Therefore, a more realistic understanding of the transport behavior of radionuclides in the fracture-matrix system is very important for the safety evaluation of HLW sites at all stages. In this study, a numerical model was developed to simulate the transport of multiple members of a radionuclide decay chain, and colloids in the fracture-matrix system. The numerical solution of the model was obtained using the finite difference method, and a FORTRAN computer code has been programmed for our proposed numerical solutions. The results show that colloids can facilitate the transport of multiple members of a radionuclide decay chain. Then, the effects of the temporal and spatial variation of colloid concentration on the transport of multiple members of a radionuclide decay chain were discussed, and it was found that 250 years ago, if t the temporal and spatial variation of colloid concentration were not considered, the transport of multiple members of a radionuclide decay chain would be overestimated. The developed numerical model is applied to calculate dose rate for safety assessment of HLW deep geological repositories. This model considering the change in the concentration of colloids which will increase the reliability of the safety assessment of HLW deep geological repositories.

    摘要 i ABSTRACT ii 致謝 iii 目錄 iv 圖目錄 iv 表目錄 v 符號說明 vi 一、緒論 1 1-1 研究背景 1 1-2 文獻回顧 10 1-3 研究目的 14 二、數學模式建立與推導 15 2-1 數學模式的建立 15 2-1-1 膠體的傳輸 16 2-1-2 放射性核種衰變鏈多成員核種的傳輸 18 2-2 數值解的推導 28 2-2-1 膠體的傳輸 29 2-2-2 母岩地下水放射性核種衰變鏈多成員核種的傳輸 32 2-2-3 放射性核種衰變鏈多成員核種在裂隙與母岩間的交換率 35 2-2-4 放射性核種衰變鏈多成員核種的傳輸 36 三、結果與討論 48 3-1 模式驗證 48 3-2 不同情境下對放射性核種衰變鏈多成員核種傳輸之影響 58 3-3 膠體濃度的時間與空間變化對放射性核種衰變鏈多成員核種傳輸之影響 64 3-4 輻射劑量評估 68 四、結論與建議 73 4-1 結論 73 4-2 建議 75 參考文獻 76

    Baek, I., and Pitt Jr, W.W., “Colloid-facilitated radionuclide transport in fractured porous rock”, Waste Management, 16 (4), 313-325, 1996.
    Bagalkot, N., and Kumar, G.S., “Numerical modeling of two species radionuclide transport in a single fracture-matrix system with variable fracture aperture”, Geosciences Journal, 20, 627-638, 2016.
    Buddemeier, R.W., and Hunt, J.R., “Transport of colloidal contaminants in groundwater: radionuclide migration at the Nevada Test Site”, Applied geochemistry, 3 (5), 133-146, 1998.
    Champ, D.R., Young, J.L., Robertson, D.E., and Abel, K.H., “Chemical speciation of long-lived radionuclides in a shallow groundwater flow system”, Water Quality Research Journal, 19 (2), 35–54, 1984.
    Chopra, M., Nair, R. N., Sunny, F., and Sharma, D. N., “Migration of radionuclides from a high-level radioactive waste repository in deep geological formations”, Environmental Earth Sciences, 73, 1757-1768, 2015.
    Chopra, M., Sunny, F., and Oza, R. B., “Numerical modeling of colloid-facilitated radionuclide decay chain transport in a coupled fracture–matrix system”, Environmental Earth Sciences, 75, 1-12, 2016.
    da Silveira, C.S., Alvim, A.C.M., and Rivero Oliva, J.D.J., “Radionuclide transport in fractured rock: numerical assessment for high level waste repository”, Science and Technology of Nuclear Installations, 2013.
    Dearlove, J.P.L., Longworth, G., and Ivanovich, M., “Improvement of colloid sampling techniques in groundwater and actinide characterisation of the groundwater systems at Gorleben (FRG) and El Berrocal (E)”, No. AEA-D AND R—0066, AEA Decommissioning and Radwaste, 1990.
    Degueldre, C., Triay, I., Kim, J.I., Vilks, P., Laaksoharju, M., and Miekeley, N., “Groundwater colloid properties: a global approach”, Applied Geochemistry, 15 (7), 1043–1051, 2000.
    Hansen, S.K., “Semianalytic solution for transport of a two‐member decay chain in discrete parallel fractures”, Water Resources Research, 49 (9), 6105-6110, 2013.
    Hodgkinson, D.P., and P.R. Maul., “1-D modelling of radionuclide migration through permeable and fractured rock for arbitrary length decay chains using numerical inversion of Laplace transforms”, Annals of Nuclear Energy, 15 (4), 175-189, 1988
    ICRP. “ICRP publication 119: compendium of dose coefficients based on ICRP publication 60” Annals of the ICRP, 41, 1-130, 2012
    Joshi, N., Ojha, C.S.P., and Sharma, P.K., “A nonequilibrium model for reactive contaminant transport through fractured porous media: Model development and semianalytical solution”, Water Resources Research, 48 (10), 2012
    Kheirabadi, M., Niksokhan, M.H., and Omidvar, B., “Colloid-associated groundwater contaminant transport in homogeneous saturated porous media: mathematical and numerical modeling”, Environmental Modeling & Assessment, 22, 79-90, 2017.
    Kretzschmar, R., Borkovec, M., Grolimund, D., and Elimelech, M., “Mobile subsurface colloids and their role in contaminant transport”, Advances in agronomy, 66, 121-193, 1999.
    Krishnamoorthy, T.M., Nair, R.N., and Sarma, T.P., “Migration of radionuclides from a granite repository”, Water Resources Research, 28 (7), 1927-1934, 1992.
    Lee, C.H., and Teng, S.P., “An analytical model for radionuclide transport in a single fracture: considering nonequilibrium matrix sorption”, Nuclear technology, 101 (1), 67-78, 1993.
    Li, S. H., and Chiou, S. L., “Radionuclide migration in fractured porous rock: analytical solution for a kinetic solubility-limited dissolution model”, Nuclear technology, 104 (2), 258-271, 1993.
    Mahmoudzadeh, B., Liu, L., Moreno, L., and Neretnieks, I., “Solute transport in a single fracture involving an arbitrary length decay chain with rock matrix comprising different geological layers”, Journal of contaminant hydrology, 164, 59-71, 2014.
    Mahmoudzadeh, B., Liu, L., Moreno, L., and Neretnieks, I., “Solute transport through fractured rock: Radial diffusion into the rock matrix with several geological layers for an arbitrary length decay chain”, Journal of Hydrology, 536, 133-146, 2016.
    Medved, I. and Černý, R., “Modeling of radionuclide transport in porous media: A review of recent studies”, Journal of Nuclear Materials, 526, 151765, 2019.
    McCarthy, J.F., and Degueldre, C., “Sampling and Characterisation of Colloids in Groundwater for Studying Their Role in the Subsurface Transport of Contaminants”, Characterization of Environmental Particles, 2, 247-315, 1993.
    McCarthy, J.F., Czerwinski, K.R., Sanford, W.E., Jardine, P.M., and Marsh, J.D., “Mobilization of transuranic radionuclides from disposal trenches by natural organic matter”, Journal of Contaminant Hydrology, 30 (1-2), 49–77, 1998.
    Mills, W.B., Liu, S., and Fong, F.K., “Literature review and model (COMET) for colloid/metals transport in porous media”, Groundwater, 29 (2), 199–208, 1991.
    Moulin, V., and Ouzounian, G. “Role of colloids and humic substances in the transport of radioelements through the geosphere”, Applied Geochemistry, 7, 179–186, 1992.
    NAS/NRC, “The disposal of radioactive waste on land. Report of the committee on waste disposal, division of earth sciences”, National Academy of Sciences-National Research Council Publication, 519, 1957.
    Nair, R.N., Sunny, F., and Manikandan, S.T., “Modelling of decay chain transport in groundwater from uranium tailings ponds”, Applied mathematical modelling, 34 (9), 2300-2311, 2010.
    Natarajan, N., and Kumar, G.S., “Radionuclide and colloid co-transport in a coupled fracture-skin-matrix system”, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 370 (1-3), 49-57, 2010.
    NEA, “Geological Disposal of Radioactive Waste: Review of Developments in the Last Decade”, Nuclear Energy Agency, Organization for Economic Cooperation and Development, Paris., 1999.
    Sen, S., Srinivas, C.V., Baskaran, R., and Venkatraman, B., “Numerical simulation of the transport of a radionuclide chain in a rock medium”, Journal of Environmental Radioactivity, 141, 115-122, 2015.
    Short, S.A., Lowson, R.T., and Ellis, J., “234U238U and 230Th234U activity ratios in the colloidal phases of aquifers in lateritic weathered zones”, Geochimica et Cosmochimica Acta, 52(11), 2555–2563, 1998.
    Sun, Y., and Buscheck, T.A., “Analytical solutions for reactive transport of N-member radionuclide chains in a single fracture”, Journal of contaminant hydrology, 62, 695-712, 2003.
    Sudicky, E.A., and Frind, E.O., “Contaminant transport in fractured porous media: analytical solution for a two‐member decay chain in a single fracture”, Water Resources Research, 20 (7), 1021-1029, 1984.
    Tang, D.H., Frind, E.O., and Sudick, E.A., ”Contaminant transport in fractured porous media: analytical solution for a single fracture”, Water resources research, 17 (3), 555–564, 1981.
    Tien, N.C., and Li, S.H., “Transport of a two-member decay chain of radionuclides through a discrete fracture in a porous rock matrix in the presence of colloids”, Nuclear Technology, 140 (1), 83-93, 2002.
    Tien, N.C., and Jen, C.P., “Analytical modeling for colloid-facilitated transport of N-member radionuclides chains in the fractured rock”, Nuclear Science and Techniques, 18 (6), 336-343, 2007.
    Vilks, P., Miller, H.G., and Doern, D.C., “Natural colloids and suspended particles in the Whiteshell Research Area, Manitoba, Canada, and their potential effect on radiocolloid formation”, Applied Geochemistry, 6 (5), 565-574, 1991.
    Zhang, W., Tang, X., Weisbrod, N., and Guan, Z., “A review of colloid transport in fractured rocks”, Journal of Mountain Science, 9, 770-787, 2012.
    台灣電力公司,我國用過核子燃料最終處置技術可行性評估報告,2019。
    行政院原子能委員會放射性物料管理局,用過核子燃料深層地質處置場近場緩衝材料耦合效應研析期末報告,2014。
    行政院原子能委員會放射性物料管理局,低放射性廢棄物處置安全管制技術發展子計畫三:低放射性廢棄物處置設施安全評估審查規範精進之研究,2015。
    行政院原子能委員會,核廢料最終處置技術及世界各國高、低放最終處置場址選擇與興建近況報告,2019。
    行政院原子能委員會,110年度核電廠除役期間廠址地下水防護管制特性研析,2021。
    陳瑞昇,放射性核種衰變鏈於裂隙岩層遷移解析解快速預測工具發展與深層地質處置安全評估應用,科技部補助專題研究計畫,2020。
    廖中翊,考慮具分岐降解反應途徑與時變函數污染源之三維多污染物傳輸解析解模式,國立中央大學應用地質研究所博士論文,2023。

    QR CODE
    :::