跳到主要內容

簡易檢索 / 詳目顯示

研究生: 姚昱志
YU-CHIH YAO
論文名稱: 應用撓性劍桿推梭創新技術於 桌上型織布機設計
Application of Flexible-Rapier-Shuttle Innovative Technology in the Design of a Desktop Weaving Machine
指導教授: 蔡錫錚
Shyi-Jeng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 機械工程學系
Department of Mechanical Engineering
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 161
中文關鍵詞: 織布機梭織機劍桿織機共軛凸輪撓性劍桿梭子最佳化設計
外文關鍵詞: Weaving Machine, Shuttle Loom, Rapier Loom, Conjugate Cam, Flexible Rapier, Shuttle, Optimization Deign
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究針對原住民文化課程中的織布教學需求,設計一款體積小、機構複雜
    度低且之緯線穩定性高的桌上型撓性劍桿推梭織布機,以促進文化傳承與教學創
    新。撓性劍桿推梭創新設計結合梭織機低複雜度與撓性劍桿織機高穩定性的優勢,
    並採用模糊自整定粒子群最佳化演算法(FST-PSO)最佳化設計打緯模組中共軛
    凸輪,成功縮小機構體積。
    研究涵蓋從機構模組化設計到快速原型開發的完整過程,使用熱熔堆疊 3D
    列印技術降低製造成本並縮短開發周期。實驗結果驗證原型機的織布品質表現,
    特別在緯線平整度與邊緣整齊度方面達到預期設計要求,幫助學習者將更多時間
    投入圖騰設計與文化內涵的學習。
    本研究提出的創新織布機設計,克服體積限制與織緯線穩定性需求,為小型
    織布機設計提出創新解決方案。


    This study addresses the weaving education needs of cultural courses for native
    peoples by designing a desktop flexible-rapier-shuttle weaving machine characterized
    by a compact size, low mechanical complexity, and high weft-insertion stability. The
    innovative design combines the low complexity of traditional shuttle looms with the
    high stability of flexible rapier looms. Additionally, the conjugate cams in the beating
    up module was optimized using the Fuzzy Self-Tuning Particle Swarm Optimization
    (FST-PSO) algorithm, effectively reducing the mechanism's overall size.
    The research encompasses the complete process from modular mechanism design
    to rapid prototyping, utilizing Fused Deposition Modeling (FDM) 3D printing
    technology to lower manufacturing costs and shorten development cycles. Experimental
    results validate the prototype's weaving performance, particularly meeting the expected
    requirements for weft uniformity and edge alignment, enabling learners to dedicate more
    time to designing patterns and exploring cultural meanings.
    This study proposes an innovative weaving machine design that overcomes size
    constraints and meets the demand for stable weft-insertion, offering a novel solution for
    the development of compact weaving machines.

    摘   要 ii Abstract iii 目   錄 iv 圖 目 錄 vii 表 目 錄 xiv 第 1 章 緒論 1 1.1 研究背景 1 1.2 文獻分析 2 1.3 研究目標 5 1.4 論文架構 7 第 2 章 織布原理與機構分析 9 2.1 織布元件與織布步驟介紹 9 2.1.1 緯線、經線與織口介紹 9 2.1.2 織布元件介紹 11 2.1.3 織布階段與步驟介紹 17 2.2 織布方法介紹 22 2.3 織布機種類與織緯線方案分析 24 2.3.1 織布機種類介紹 24 2.3.2 織緯線機構複雜度、穩定度與體積分析 29 2.3.3 撓性劍桿推梭式織緯線方案 32 2.4 織布機機構功能、狀態與時序圖分析 34 2.4.1 織布機機構功能與狀態定義 34 2.4.2 機構時序圖 36 第 3 章 桌上型撓性劍桿推梭式織布機概念設計 39 3.1 基本設計規格 39 3.2 模組架構 42 3.3 模組作動時序圖與傳動鏈設計 45 3.4 模組設計要求 49 3.4.1 打緯模組設計要求 49 3.4.2 撓性劍桿推梭模組設計要求 50 3.4.3 提經模組設計要求 50 3.4.4 捲經模組設計要求 51 3.4.5 送布模組設計要求 52 第 4 章 打緯模組設計 53 4.1 打緯模組設計目標與架構 53 4.2 共軛凸輪設計流程與設計目標 57 4.3 共軛凸輪運動時序圖設計與運動曲線挑選 59 4.3.1 共軛凸輪運動時序圖設計 59 4.3.2 共軛凸輪運動曲線挑選 60 4.3.3 8次方多項式運動曲線 63 4.4 共軛凸輪輪廓計算與設計參數分析 66 4.4.1 共軛凸輪輪廓計算 66 4.4.2 共軛凸輪設計參數與間接參數分析 71 4.5 共軛凸輪最佳化設計 75 4.5.1 目標函數與限制條件 75 4.5.2 粒子群最佳化演算法(PSO)與懲罰函數 84 4.5.3 模糊推論系統(Fuzzy Inference System)概述 88 4.5.4 模糊自整定粒子群最佳化演算法(FST-PSO) 91 4.5.5 最佳化共軛凸輪設計結果 97 4.6 打緯模組設計結果 101 第 5 章 撓性劍桿推梭模組設計 103 5.1 撓性劍桿推梭模組概念設計 103 5.2 劍桿驅動次模組與劍桿收納次模組實體化設計結果 108 5.3 推梭器次模組實體化設計 111 5.4 撓性劍桿推梭模組設計結果與討論 113 第 6 章 整體機構具體化設計 117 6.1 桌上型撓性劍桿推梭織布機具體化設計結果 117 6.2 提經模組具體化設計 121 6.3 捲經模組與送布模組具體化設計結果 126 6.3.1 捲經模組具體化設計結果 126 6.3.2 送布模組具體化設計結果 128 第 7 章 織布品質測試與分析 130 7.1 織布實驗設計 130 7.2 織布品質指標 136 7.3 織布品質分析與討論 138 第 8 章 結論 142 第 9 章 參考文獻 143

    [1] 陈人哲 and 陈明, "纺织机械设计原理," ed, 1996.
    [2] I. Thomas and J. Vincent, "1—AN EXPERIMENTAL STUDY OF SHUTTLE PROJECTION," Journal of the Textile Institute Transactions, vol. 40, no. 1, pp. T1-T29, 1949.
    [3] U. S. Modi and B. Modi, "Design and Analysis of Picking Cam for High Speed Shuttle Loom," in National Conference on Machines and Mechanisms (iNaCoMM2013), IIT Roorkee, India, 2013.
    [4] T. Ishida and A. Umeda, "Some attempts at reducing the noise of shuttle looms," Journal of the Textile Institute, vol. 78, no. 5, pp. 450-463, 1987.
    [5] F. Hart, B. Patel, and J. Bailey, "Mechanical separation phenomena in picking mechanisms of fly-shuttle looms," 1976.
    [6] P. Strubbe, "Gripper belt drive for a rapier weaving machine," Patent DE10346227B4, 2003-09-23, 2012.
    [7] Y. He, S. W. Fei, Y. C. Chen, and B. Wang, "Research on Electric Weft Insertion Method for the Rapier Loom," Applied Mechanics and Materials, vol. 249, pp. 739-746, 2013.
    [8] E. Verclyte, "TRANSFER GRIPPER FOR A RAPIER WEAVING LOOM," Patent US 7,128,098 B2 Patent Appl. 10/528,409, 2006.
    [9] R. Eren and A. Aydemir, "An approach to kinematic design of four-bar sley drive mechanisms in weaving," The Journal of The Textile Institute, vol. 95, no. 1-6, pp. 193-205, 2004.
    [10] J. Mrázek, "Theoretical analysis of dynamics of four-bar beat-up mechanism of a loom," Mechanism and machine theory, vol. 27, no. 3, pp. 331-341, 1992.
    [11] A. Guha, C. Amarnath, M. Talukdar, and A. Manoj, "A novel mechanism for driving the sley in a shuttle loom," Journal of the Textile Institute, vol. 97, no. 6, pp. 513-518, 2006.
    [12] H. Gu, "Investigation of Conjugate-cam Design for the Beat-up Mechanism," Journal of the Textile Institute, vol. 84, no. 3, pp. 387-393, 1993.
    [13] L. Yang, J. Guoguang, W. Zhan, and S. Yanyan, "Dynamic characteristics analysis of conjugate cam beating-up mechanism of rapier loom," in 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), 2020: IEEE, pp. 823-830.
    [14] Y. Zhang and J.-H. Shin, "A computational approach to profile generation of planar cam mechanisms," J. Mech. Des., vol. 126, no. 1, pp. 183-188, 2004.
    [15] L. Wu, "Calculating conjugate cam profiles by vector equations," Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, vol. 217, no. 10, pp. 1117-1123, 2003.
    [16] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge university press, 2004.
    [17] D. H. Wolpert and W. G. Macready, "No free lunch theorems for optimization," IEEE transactions on evolutionary computation, vol. 1, no. 1, pp. 67-82, 1997.
    [18] J. H. Holland, Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence. MIT press, 1992.
    [19] K. Deb, A. Pratap, S. Agarwal, and T. Meyarivan, "A fast and elitist multiobjective genetic algorithm: NSGA-II," IEEE transactions on evolutionary computation, vol. 6, no. 2, pp. 182-197, 2002.
    [20] J. Kennedy and R. Eberhart, "Particle swarm optimization," in Proceedings of ICNN'95-international conference on neural networks, 1995, vol. 4: ieee, pp. 1942-1948.
    [21] M. R. Bonyadi and Z. Michalewicz, "Analysis of stability, local convergence, and transformation sensitivity of a variant of the particle swarm optimization algorithm," IEEE Transactions on Evolutionary Computation, vol. 20, no. 3, pp. 370-385, 2015.
    [22] Z.-H. Zhan, J. Zhang, Y. Li, and H. S.-H. Chung, "Adaptive particle swarm optimization," IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 39, no. 6, pp. 1362-1381, 2009.
    [23] M. S. Nobile, P. Cazzaniga, D. Besozzi, R. Colombo, G. Mauri, and G. Pasi, "Fuzzy Self-Tuning PSO: A settings-free algorithm for global optimization," Swarm and evolutionary computation, vol. 39, pp. 70-85, 2018.
    [24] I. Tsiafis, S. Mitsi, K. Bouzakis, and A. Papadimitriou, "Optimal design of a cam mechanism with translating flat-face follower using genetic algorithm," Tribol Ind, vol. 35, no. 4, pp. 255-260, 2013.
    [25] R. L. Norton, Cam Design and Manufacturing Handbook. Industrial Press Inc., 2009.
    [26] H. A. Rothbart and D. L. Klipp, Cam design handbook. 2004.
    [27] J.-L. Liu and J.-H. Lin, "Evolutionary computation of unconstrained and constrained problems using a novel momentum-type particle swarm optimization," Engineering Optimization, vol. 39, no. 3, pp. 287-305, 2007.

    QR CODE
    :::