跳到主要內容

簡易檢索 / 詳目顯示

研究生: 林廷翰
Ting-Han Lin
論文名稱: 中壢特高頻雷達系統初始相位偏差估計與應用
Estimation and application of phase offsets of Chungli VHF radar system
指導教授: 朱延祥
Yen‐Hsyang Chu
口試委員:
學位類別: 博士
Doctor
系所名稱: 地球科學學院 - 太空科學研究所
Graduate Institute of Space Science
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 230
中文關鍵詞: 中壢特高頻雷達同相散射雷達空間域雷達干涉法系統初始相位偏差相位校正散塊E層場沿電漿不規則體廣播式自動相關監視系統風切理論
外文關鍵詞: Chungli VHF Radar, Coherent scatter radar, Spatial interferometry, System phase offset, Phase calibration, Sporadic E layer, Field-aligned irregularities, ADS-B system, Windshear theory
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 數十年來,中壢特高頻雷達利用空間域雷達干涉法,對散塊E層場沿電漿不規則體(Field-aligned Irregularities (FAIs))進行空間定位與頻譜特性分析,已累積大量的研究成果。研究過程中,若欲對FAIs進行精確的空間定位,則雷達系統的初始相位偏差估計與校正就非常重要。過去,中壢特高頻雷達利用FAIs的場沿特性,配合國際地磁參考場(International Geomagnetic Reference Field (IGRF))模型,計算FAIs的理論來向角分布,再與觀測到的FAIs來向角分布做比較,用以估算各接收頻道間的系統初始相位偏差。本研究針對此種演算法進行改良,並利用蒙地卡羅方法(Monte Carlo method)模擬FAIs在來向角平面上的分布,結果顯示,此模擬分布與真實分布型態相當一致,足以用來表達真實的FAIs回波分布。此外,本研究重新推導FAIs回波點與中壢特高頻雷達站址,在World Geodetic System 1984 (WGS84)橢球坐標上的幾何關係,以期計算出更精確的FAIs預測回波區域。另一方面,本研究引進新型態的觀測目標物,包括搭載Automatic Dependent Surveillance – Broadcast (ADS-B)系統的民航機與搭載Real Time Kinematic (RTK)系統的多軸飛行器,用以做為參考目標物來進行系統初始相位偏差的估計。結果顯示,利用民航機與多軸飛行器所估計出的系統初始相位偏差相當一致,經由此交互驗證,顯見若以民航機與多軸飛行器做為參考目標物,皆能提供基本且可靠的系統初始相位偏差估計結果。然而利用FAIs的場沿特性所估計出的系統初始相位偏差卻與前兩者不同,本研究就此估計結果間的差異進行了詳細討論。利用所估計出的系統初始相位偏差,本研究對2017年與2018年夏季,共四個月的FAIs觀測資料進行精確空間定位與頻譜特性分析,除了發現FAIs平均都卜勒速度有明顯的日變化,還發現層狀FAIs的高度日變化有雙層結構。此外,利用精確的空間域雷達干涉法,本研究得以對FAIs結構的垂直都卜勒速度切變進行估算與統計,發現都卜勒速度切變與FAIs發生率、平均頻譜寬、平均回波強度三者之間,各有統計上的相關性。


    The phase imbalance between receiving channels of a phase array antenna, referred to as phase offset, is one of the most crucial parameters in positioning the targets in lower and upper atmospheres using spatial domain interferometry (SDI) technique. In this study, we develop a method of using commercial aircraft that equips with Automatic Dependent Surveillance-Broadcast (ADS-B) system to estimate the system phase offsets of the Chungli VHF radar. The aviation data broadcasted from ADS-B system combined with the radar returns from the aircraft can obtain the system phase offset. The principle of the method and the algorithms of processing the ADS-B messages are described and the procedures of analyzing the aircraft echoes are also detailed in this study. On the basis of this method, multirotor equipped with a high precision GPS receiver is also employed to estimate radar system phase offset. The results show that the system phase offsets estimated by the aircraft and those from the multirotor are consistent. However, the aircraft/multirotor-derived system phase offsets are very different from those estimated from the radar returns of the 3-meter ionospheric field-aligned plasma irregularities (FAIs) combined with International Geomagnetic Reference Field 12th generation (IGRF-12) model. The principle of the FAIs method is introduced and the plausible causes of the discrepancies in the estimated system phase offsets between aircraft/multirotor and FAIs are discussed. Additionally, based on the estimation result of phase offsets of Chungli VHF radar, the calibrated interferometry results of FAIs during four months in summer are calculated, that is, the fine structure of FAIs can be constructed clearly. The interferometry result shows that the statistical characteristics of total power, spectral width, Doppler shift, height and Doppler velocity shear of FAIs structure have temporal and spatial variations in Es region, furthermore, comparisons between characteristics of FAIs are made and discussed in this study.

    摘要ix Abstract xi 誌謝xiii 目錄xv 圖目錄xxi 表目錄xxvii 一、緒論1 1.1 研究目的.................................................................. 1 1.2 文獻回顧.................................................................. 3 1.3 研究方法.................................................................. 5 1.4 中壢特高頻雷達系統架構............................................. 7 二、利用地磁模型估計系統初始相位偏差11 2.1 前言........................................................................ 11 2.2 文獻回顧.................................................................. 13 2.3 理論推導.................................................................. 16 2.3.1 系統初始相位偏差............................................. 16 2.3.2 雷達干涉法...................................................... 17 2.3.3 來向角-相位差轉換............................................ 18 2.3.4 橢球坐標系上兩點間的幾何關係........................... 20 2.3.5 FAIs 場沿特性.................................................. 22 2.3.6 來向角-橢球坐標轉換......................................... 23 2.4 實驗設計.................................................................. 25 2.4.1 雷達資料處理................................................... 27 2.4.2 雙向合成天線場型模擬....................................... 32 2.4.3 FAIs 回波分布模擬............................................ 35 2.5 實驗結果.................................................................. 40 2.6 討論........................................................................ 45 2.7 結論........................................................................ 53 三、利用民航機軌跡估計系統初始相位偏差55 3.1 前言........................................................................ 55 3.2 文獻回顧.................................................................. 56 3.3 實驗儀器.................................................................. 56 3.3.1 ADS-B 系統簡介............................................... 56 3.3.2 ADS-B 訊號接收系統......................................... 58 3.3.3 ADS-B 資料解析............................................... 59 3.4 理論推導.................................................................. 65 3.4.1 WGS84-TM2 坐標轉換....................................... 65 3.4.2 軌跡重建......................................................... 67 3.4.3 時間同步......................................................... 71 3.4.4 初始相位偏差估計............................................. 72 3.4.5 誤差模擬......................................................... 72 3.5 實驗設計.................................................................. 76 3.5.1 雷達資料處理................................................... 78 3.6 實驗結果.................................................................. 82 3.7 討論........................................................................ 86 3.8 結論........................................................................ 89 四、利用多軸飛行器軌跡估計系統初始相位偏差91 4.1 前言........................................................................ 91 4.2 文獻回顧.................................................................. 92 4.3 理論推導.................................................................. 92 4.4 實驗儀器.................................................................. 93 4.4.1 多軸飛行器...................................................... 93 4.4.2 Here+ RTK GPS 模組........................................ 94 4.4.3 Here+ RTK GPS 資料解析.................................. 96 4.4.4 中科院超高頻通訊測試系統................................. 102 4.5 實驗設計.................................................................. 105 4.5.1 實驗程序......................................................... 106 4.5.2 雷達資料處理................................................... 108 4.6 實驗結果.................................................................. 109 4.7 討論........................................................................ 111 4.8 結論........................................................................ 113 五、電離層散塊E 層FAIs 特性研究117 5.1 前言........................................................................ 117 5.2 文獻回顧.................................................................. 119 5.3 理論介紹.................................................................. 121 5.3.1 散塊E 層形成理論............................................ 121 5.3.2 FAIs 形成理論.................................................. 122 5.4 雷達資料處理............................................................ 124 5.5 實驗結果與討論......................................................... 133 5.5.1 平均都卜勒速度日變化....................................... 133 5.5.2 平均頻譜寬日變化............................................. 139 5.5.3 平均高度日變化................................................ 143 5.5.4 平均都卜勒速度垂直切變日變化........................... 151 5.5.5 平均回波強度分類統計....................................... 154 5.5.6 平均都卜勒速度-平均頻譜寬與平均回波強度的關 係........................................................................... 155 5.5.7 平均都卜勒速度垂直切變隨平均高度變化............... 157 5.5.8 平均都卜勒速度垂直切變與平均頻譜寬的關係......... 159 5.5.9 平均都卜勒速度垂直切變與平均回波強度的關係...... 162 5.5.10 厚度與平均頻譜寬的關係.................................... 163 5.6 結論........................................................................ 164 六、學術貢獻與未來展望169 6.1 學術貢獻.................................................................. 169 6.2 未來展望.................................................................. 172 參考文獻175 附錄A Trimble R6 性能規格表187 附錄B 用於子陣列中心定位之參考水準點相關文件189 附錄C 相位模糊修正量估計199 附錄D 多軸飛行器禁制區域圖201

    [1] M. Strohmeier, M. Schafer, V. Lenders, and I. Martinovic. “Realities and challenges
    of nextgen air traffic management: the case of ADS-B.” IEEE Communications
    Magazine, 52(5):111–118, 2014. ISSN 0163-6804.
    [2] K. S. Gage and B. B. Balsley. “On the scattering and reflection mechanisms contributing
    to clear air radar echoes from the troposphere, stratosphere, and mesophere.”
    Radio Science, 15(2):243–257, 1980. ISSN 0048-6604. doi: 10.1029/
    RS015i002p00243. URL: https://agupubs.onlinelibrary.wiley.com/
    doi/abs/10.1029/RS015i002p00243.
    [3] Yen-Hsyang Chu, Lee-Po Chian, and Chao-Han Liu. “The investigations of the
    atmospheric precipitations by using Chung-Li VHF radar.” Radio Science, 26(3):717–
    729, 1991. ISSN 0048-6604. doi: 10.1029/91rs00830. URL: https://agupubs.
    onlinelibrary.wiley.com/doi/abs/10.1029/91RS00830.
    [4] M. Rapp and F.-J. Lübken. “Polar mesosphere summer echoes (PMSE): Review
    of observations and current understanding.” Atmospheric Chemistry and Physics,
    4(11/12):2601–2633, 2004. ISSN 1680-7316. URL: https://hal.archivesouvertes.
    fr/hal-00295574.
    [5] C. L. Su, H. C. Chen, Y. H. Chu, M. Z. Chung, R. M. Kuong, T. H. Lin, K. J.
    Tzeng, C. Y. Wang, K. H. Wu, and K. F. Yang. “Meteor radar wind over Chung-Li
    (24.9°N, 121°E), Taiwan, for the period 10–25 November 2012 which includes Leonid
    meteor shower: Comparison with empirical model and satellite measurements.” Radio
    Science, 49(8):597–615, 2014. ISSN 0048-6604. doi: 10.1002/2013RS005273. URL:
    https://doi.org/10.1002/2013RS005273.
    [6] D. T. Farley, H. M. Ierkic, and B. G. Fejer. “Radar interferometry: A new technique
    for studying plasma turbulence in the ionosphere.” Journal of Geophysical Research:
    Space Physics, 86(A3):1467–1472, 1981. ISSN 2156-2202.
    [7] J. F. Providakes, W. E. Swartz, D. T. Farley, and B. G. Fejer. “First VHF auroral
    radar interferometer observations.” Geophysical research letters, 10(5):401–404,
    1983. ISSN 1944-8007.
    [8] Yen-Hsyang Chu and Chien-Ya Wang. “Interferometry observations of threedimensional
    spatial structures of sporadic E irregularities using the Chung-Li
    VHF radar.” Radio Science, 32(2):817–832, 1997. ISSN 0048-6604. doi: 10.
    1029/96rs03578. URL: https://agupubs.onlinelibrary.wiley.com/
    doi/abs/10.1029/96RS03578.
    [9] S. Saito, M. Yamamoto, H. Hashiguchi, A. Maegawa, and A. Saito. “Observational
    evidence of coupling between quasi-periodic echoes and medium scale traveling ionospheric
    disturbances.” Annales Geophysicae, 25(10):2185–2194, 2007.
    [10] J. L. Chau, T. Renkwitz, G. Stober, and R. Latteck. “MAARSY multiple receiver
    phase calibration using radio sources.” Journal of Atmospheric and Solar-Terrestrial
    Physics, 118:55–63, 2014. ISSN 1364-6826. doi: https://doi.org/10.1016/j.jastp.
    2013.04.004. URL: http://www.sciencedirect.com/science/article/
    pii/S136468261300117X.
    [11] T. Y. Yu and R. D. Palmer. “Atmospheric radar imaging using multiple‐receiver
    and multiple‐frequency techniques.” Radio Science, 36(6):1493–1503, 2001. ISSN
    1944-799X.
    [12] S. C. Tsai, J. S. Chen, Y. H. Chu, C. L. Su, and J. H. Chen. “High-range resolution
    spectral analysis of precipitation through range imaging of the Chung-Li VHF radar.”
    Atmospheric Measurement Techniques, 11(1):581, 2018. ISSN 1867-8548.
    [13] Jenn-Shyong Chen, Ching-Lun Su, Yen-Hsyang Chu, Gernot Hassenpflug, and
    Marius Zecha. “Extended Application of a Novel Phase Calibration Approach
    of Multiple-Frequency Range Imaging to the Chung-Li and MU VHF Radars.”
    Journal of Atmospheric and Oceanic Technology, 26(11):2488–2500, 2009. doi:
    10.1175/2009jtecha1295.1. URL: https://journals.ametsoc.org/doi/
    abs/10.1175/2009JTECHA1295.1.
    [14] J. S. Chen, S. C. Tsai, C. L. Su, and Y. H. Chu. “Evaluation of multifrequency
    range imaging technique implemented on the Chung–Li VHF atmospheric radar.”
    Atmos. Meas. Tech., 9(5):2345–2355, 2016. ISSN 1867-8548. doi: 10.5194/amt-9-
    2345-2016. URL: https://www.atmos-meas-tech.net/9/2345/2016/.
    [15] J. Chen, C. Wang, Y. Chu, C. Su, and H. Hashiguchi. “3-D Radar Imaging of
    E-Region Field-Aligned Plasma Irregularities by Using Multireceiver and Multifrequency
    Techniques.” IEEE Transactions on Geoscience and Remote Sensing, 56(10):
    5591–5599, 2018. ISSN 0196-2892. doi: 10.1109/TGRS.2018.2818331.
    [16] Jenn-Shyong Chen, Jian-Wu Lai, Hwa Chien, Chien-Ya Wang, Ching-Lun Su, Kun-I
    Lin, Meng-Yuan Chen, and Yen-Hsyang Chu. “VHF Radar Observations of Sea
    Surface in the Northern Taiwan Strait.” Journal of Atmospheric and Oceanic
    Technology, 36(2):297–315, 2019. doi: 10.1175/jtech-d-18-0110.1. URL: https:
    //journals.ametsoc.org/doi/abs/10.1175/JTECH-D-18-0110.1.
    [17] J. L. Chau, D. L. Hysell, K. M. Kuyeng, and F. R. Galindo. “Phase calibration
    approaches for radar interferometry and imaging configurations: equatorial spread F
    results.” Ann. Geophys, 26:2333–2343, 2008.
    [18] D. S. Robertson, D. T. Liddy, and W. G. Elford. “Measurements of winds in the
    upper atmosphere by means of drifting meteor trails I.” Journal of Atmospheric and
    Terrestrial Physics, 4(4-5):255–270, 1953. ISSN 0021-9169.
    [19] J. S. Chen, J. Röttger, and Y. H. Chu. “System phase calibration of VHF
    spaced antennas using the echoes of aircraft and incorporating the frequency domain
    interferometry technique.” Radio Science, 37(5):13–1–13–13, 2002. doi: doi:
    10.1029/2002RS002604. URL: https://agupubs.onlinelibrary.wiley.
    com/doi/abs/10.1029/2002RS002604.
    [20] T. Aso, T. Tsuda, and S. Kato. “Meteor radar observations at Kyoto University.”
    Journal of Atmospheric and Terrestrial Physics, 41(5):517–525, 1979. ISSN 0021-
    9169.
    [21] B. G. W. Vandepeer and I. M. Reid. “Some preliminary results obtained with
    the new Adelaide MF Doppler radar.” Radio Science, 30(4):1191–1203, 1995. doi:
    doi:10.1029/95RS00732. URL: https://agupubs.onlinelibrary.wiley.
    com/doi/abs/10.1029/95RS00732.
    [22] T. A. Valentic, J. P. Avery, S. K. Avery, and R. C. Livingston. “Self-survey calibration
    of meteor radar antenna arrays.” IEEE transactions on geoscience and remote
    sensing, 35(3):524–531, 1997. ISSN 0196-2892.
    [23] F. H. Glanz. “Azimuth measuring system for a meteor-trails radar.” IEEE
    Transactions on Geoscience Electronics, 9(1):56–62, 1971. ISSN 0018-9413.
    [24] R. R. Clark. “Meteor wind data for global comparisons.” Journal of Atmospheric
    and Terrestrial Physics, 40(8):905–911, 1978. ISSN 0021-9169.
    [25] R. D. Palmer, S. Vangal, M. F. Larsen, S. Fukao, T. Nakamura, and M. Yamamoto.
    “Phase calibration of VHF spatial interferometry radars using stellar sources.” Radio
    Science, 31(1):147–156, 1996. ISSN 1944-799X. doi: 10.1029/95RS02319. URL:
    http://dx.doi.org/10.1029/95RS02319.
    [26] J. M. Sullivan, N. Ivchenko, M. Lockwood, T. Grydeland, E. M. Blixt, and B. S.
    Lanchester. “Phase calibration of the EISCAT Svalbard Radar interferometer using
    optical satellite signatures.” Annales Geophysicae, 24(9):2419–2427, 2006.
    [27] N. M. Schlatter, T. Grydeland, N. Ivchenko, V. Belyey, J. M. Sullivan, C. La Hoz,
    and M. Blixt. “Radar interferometer calibration of the EISCAT Svalbard Radar and
    a additional receiver station.” Journal of Atmospheric and Solar-Terrestrial Physics,
    105:287–292, 2013. ISSN 1364-6826.
    [28] D. A. Holdsworth, M. Tsutsumi, I. M. Reid, T. Nakamura, and T. Tsuda. “Interferometric
    meteor radar phase calibration using meteor echoes.” Radio science, 39(5):
    1–12, 2004. ISSN 1944-799X.
    [29] C. Y. Wang. “The observations of ionospheric sporadic E irregularies using the
    Chung-Li VHF radar.” National Central University, Doctoral thesis, Taoyuan, 1999.
    [30] C. Y. Wang and Y. H. Chu. “Interferometry investigations of blob-like sporadic E
    plasma irregularity using the Chung-Li VHF radar.” Journal of Atmospheric and
    Solar-Terrestrial Physics, 63(2-3):123–133, 2001. ISSN 1364-6826.
    [31] R. M. Kuong, Y. H. Chu, S. Y. Su, and C. L. Su. “The Chung-Li VHF Radar As
    a Meteor System Phase Bias Estimation and Experimental Results.” Terrestrial,
    Atmospheric and Oceanic Sciences, 14(2):113–132, 2003. ISSN 1017-0839. doi: 10.
    3319/TAO.2003.14.2.113(A).
    [32] D. T. Farley. “Theory of equatorial electrojet plasma waves: new developments
    and current status.” Journal of Atmospheric and Terrestrial Physics, 47(8):
    729–744, 1985. ISSN 0021-9169. doi: https://doi.org/10.1016/0021-9169(85)
    90050-9. URL: http://www.sciencedirect.com/science/article/
    pii/0021916985900509.
    [33] C. Y. Wang, Y. H. Chu, C. L. Su, R. M. Kuong, H. C. Chen, and K. F. Yang.
    “Statistical investigations of layer-type and clump-type plasma structures of 3-m
    field-aligned irregularities in nighttime sporadic E region made with Chung-Li VHF
    radar.” Journal of Geophysical Research: Space Physics, 116(A12), 2011. ISSN
    0148-0227. doi: 10.1029/2011JA016696. URL: https://doi.org/10.1029/
    2011JA016696.
    [34] C. C. Finlay, B. Langlais, F. J. Lowes, M. Mandea, M. Menvielle, L. Tøffner-Clausen,
    N. Olsen, A. Tangborn, Z. Wei, C. Manoj, S. Maus, S. McLean, A. W. P. Thomson,
    B. Hamilton, C. D. Beggan, S. Macmillan, T. A. Chernova, T. I. Zvereva, T. N.
    Bondar, V. P. Golovkov, A. Chambodut, A. Chulliat, E. Thébault, G. Hulot, H. Lühr,
    I. Michaelis, I. Wardinski, J. Rauberg, M. Hamoudi, M. Rother, V. Lesur, R. Holme,
    T. J. Sabaka, and W. Kuang. “International Geomagnetic Reference Field: the
    eleventh generation.” Geophysical Journal International, 183(3):1216–1230, 2010.
    ISSN 0956-540X. doi: 10.1111/j.1365-246X.2010.04804.x. URL: https://doi.
    org/10.1111/j.1365-246X.2010.04804.x.
    [35] Arnaud Chulliat, Susan Macmillan, Patrick Alken, Ciaran Beggan, Manoj Nair,
    Brian Hamilton, Adam Woods, Victoria Ridley, Stefan Maus, and Alan Thomson.
    “The US/UK World Magnetic Model for 2015-2020.” Report 10.7289/V5TB14V7,
    NOAA/NGDC and BGS, 2015. URL: http://nora.nerc.ac.uk/id/eprint/
    510709/.
    [36] B. Meyer, A. Chulliat, and R. Saltus. “Derivation and Error Analysis of the
    Earth Magnetic Anomaly Grid at 2 arc min Resolution Version 3 (EMAG2v3).”
    Geochemistry, Geophysics, Geosystems, 18(12):4522–4537, 2017. ISSN 1525-2027.doi: 10.1002/2017gc007280. URL: https://agupubs.onlinelibrary.
    wiley.com/doi/abs/10.1002/2017GC007280.
    [37] Arnaud Chulliat, William Brown, Patrick Alken, Susan Macmillan, Manoj Nair,
    Ciaran Beggan, Adam Woods, Brian Hamilton, Brian Meyer, and Robert Redmon.
    “Out-of-Cycle Update of the US/UK World Magnetic Model for 2015-2020.” Report
    https://doi.org/10.25921/xhr3-0t19, NOAA/NGDC and BGS, 2019. URL: http:
    //nora.nerc.ac.uk/id/eprint/522167/.
    [38] Erwan Thébault, Christopher C. Finlay, Ciarán D. Beggan, Patrick Alken, Julien
    Aubert, Olivier Barrois, Francois Bertrand, Tatiana Bondar, Axel Boness, Laura
    Brocco, Elisabeth Canet, Aude Chambodut, Arnaud Chulliat, Pierdavide Coïsson,
    François Civet, Aimin Du, Alexandre Fournier, Isabelle Fratter, Nicolas Gillet, Brian
    Hamilton, Mohamed Hamoudi, Gauthier Hulot, Thomas Jager, Monika Korte, Weijia
    Kuang, Xavier Lalanne, Benoit Langlais, Jean-Michel Léger, Vincent Lesur,
    Frank J. Lowes, Susan Macmillan, Mioara Mandea, Chandrasekharan Manoj, Stefan
    Maus, Nils Olsen, Valeriy Petrov, Victoria Ridley, Martin Rother, Terence J.
    Sabaka, Diana Saturnino, Reyko Schachtschneider, Olivier Sirol, Andrew Tangborn,
    Alan Thomson, Lars Tøffner-Clausen, Pierre Vigneron, Ingo Wardinski, and Tatiana
    Zvereva. “International Geomagnetic Reference Field: the 12th generation.” Earth,
    Planets and Space, 67(1):79, 2015. ISSN 1880-5981. doi: 10.1186/s40623-015-
    0228-9. URL: https://doi.org/10.1186/s40623-015-0228-9.
    [39] Yen-Hsyang Chu and Chien-Ya Wang. “Plasma structures of 3-meter type 1 and type
    2 irregularities in nighttime midlatitude sporadic E region.” Journal of Geophysical
    Research: Space Physics, 107(A12):SIA 8–1–SIA 8–11, 2002. ISSN 0148-0227. doi:
    10.1029/2002JA009318. URL: https://doi.org/10.1029/2002JA009318.
    [40] Yen-Hsyang Chu and Chien-Ya Wang. “Three-dimensional spatial structures of midlatitude
    type 1 Es irregularities.” Journal of Geophysical Research: Space Physics,
    107(A8):SIA 13–1–SIA 13–11, 2002. ISSN 0148-0227. doi: 10.1029/2001JA000215.
    URL: https://doi.org/10.1029/2001JA000215.
    [41] Yen-Hsyang Chu and Chien-Ya Wang. “Radial velocity and doppler spectral width
    of echoes from field-aligned irregularities localized in the sporadic E region.” Journal
    of Geophysical Research: Space Physics, 108(A7), 2003. ISSN 0148-0227. doi: 10.
    1029/2002JA009661. URL: https://doi.org/10.1029/2002JA009661.
    [42] Yen-Hsyang Chu and Chien-Ya Wang. “Interferometry observations of VHF
    backscatter from plasma irregularities induced by meteor in sporadic E region.”
    Geophysical Research Letters, 30(24), 2003. ISSN 0094-8276. doi: 10.1029/
    2003GL017703. URL: https://doi.org/10.1029/2003GL017703.
    [43] C. L. Chen, C. J. Pan, J. Röttger, and V. K. Anandan. “Three-dimensional tracking
    of mid-latitude quasi-periodic E-region echoes observed with the Chung-Li VHF
    radar.” Annales Geophysicae, 23(2):393–400, 2005. ISSN 0992-7689. URL: https:
    //hal.archives-ouvertes.fr/hal-00317542.
    [44] Y.-H. Chu. “Effects of along- and cross-radar-beam winds on Doppler radar
    spectrum.” Annales Geophysicae, 23(3):681–692, 2005. ISSN 0992-7689. URL:
    https://hal.archives-ouvertes.fr/hal-00317595.
    [45] Yen-Hsyang Chu and Chien-Ya Wang. “An evidence of beam broadening effect
    dominating Doppler spectra of field-aligned irregularities in sporadic E region made
    with the Chung-Li radar.” Journal of Geophysical Research: Space Physics, 110
    (A9), 2005. ISSN 0148-0227. doi: 10.1029/2004JA010768. URL: https://doi.
    org/10.1029/2004JA010768.
    [46] C. J. Pan, J. Röttger, and C. L. Chen. “Radar investigations of low-altitude quasiperiodic
    echoes in Chung-Li.” Geophysical Research Letters, 32(11), 2005. ISSN
    0094-8276. doi: 10.1029/2004GL022136. URL: https://doi.org/10.1029/
    2004GL022136.
    [47] Yen-Hsyang Chu and Chien-Ya Wang. “Spatial distribution of random velocity fluctuations
    of 3-m field-aligned irregularities in ionospheric sporadic E layer.” Journal
    of Geophysical Research: Space Physics, 112(A7), 2007. ISSN 0148-0227. doi:
    10.1029/2006JA011851. URL: https://doi.org/10.1029/2006JA011851.
    [48] Yen-Hsyang Chu and Chien-Ya Wang. “Estimation of beam broadening spectrum
    of radar returns from field-aligned irregularities in ionospheric sporadic E region.”
    Advances in Space Research, 39(8):1351–1354, 2007. ISSN 0273-1177. doi: https://
    doi.org/10.1016/j.asr.2006.10.016. URL: http://www.sciencedirect.com/
    science/article/pii/S0273117706006235.
    [49] Yen-Hsyang Chu, Chien-Ya Wang, and Kuo-Feng Yang. “Plasma structures responsible
    for sporadic E region quasi-periodic echoes.” Journal of Atmospheric
    and Solar-Terrestrial Physics, 69(4):537–551, 2007. ISSN 1364-6826. doi: https:
    //doi.org/10.1016/j.jastp.2006.10.006. URL: http://www.sciencedirect.
    com/science/article/pii/S1364682606002951.
    [50] Wang Chien-Ya, Chu Yen-Hsyang, Su Ching-Lun, Kuong Ruey-Ming, Chen Hsyang-
    Chan, and Chu Fan-Da. “Campaign Investigation of Ionospheric Plasma Irregularities
    in Sporadic E Region Using FORMOSAT-3/COSMIC Satellite and Chung-
    Li 30 MHz Coherent Radar.” Terrestrial, Atmospheric and Oceanic Sciences, 20
    (1):237–250, 2009. ISSN 1017-0839. URL: http://www.AiritiLibrary.com/
    Publication/Index/10170839-200902-20-1-237-250-a.
    [51] Yen-Hsyang Chu, P. S. Brahmanandam, Chien-Ya Wang, Ching-Lun Su, and Ruey-
    Ming Kuong. “Coordinated sporadic E layer observations made with Chung-
    Li 30MHz radar, ionosonde and FORMOSAT-3/ COSMIC satellites.” Journal
    of Atmospheric and Solar-Terrestrial Physics, 73(9):883–894, 2011. ISSN 1364-
    6826. doi: https://doi.org/10.1016/j.jastp.2010.10.004. URL: http://www.
    sciencedirect.com/science/article/pii/S136468261000307X.
    [52] Y. H. Chu, K. F. Yang, C. Y. Wang, and C. L. Su. “Meridional electric fields
    in layer-type and clump-type plasma structures in midlatitude sporadic E region:
    Observations and plausible mechanisms.” Journal of Geophysical Research: Space
    Physics, 118(3):1243–1254, 2013. ISSN 2169-9380. doi: 10.1002/jgra.50191. URL:
    https://doi.org/10.1002/jgra.50191.
    [53] F. F. Lin, C. Y. Wang, C. L. Su, K. Shiokawa, S. Saito, and Y. H. Chu. “Coordinated
    observations of F region 3 m field-aligned plasma irregularities associated
    with medium-scale traveling ionospheric disturbances.” Journal of Geophysical
    Research: Space Physics, 121(4):3750–3766, 2016. ISSN 2169-9380. doi: 10.1002/
    2016JA022511. URL: https://doi.org/10.1002/2016JA022511.
    [54] Yen-Hsyang Chu and Kuo-Feng Yang. “Reconstruction of spatial structure
    of thin layer in sporadic E region by using VHF coherent scatter
    radar.” Radio Science, 44(5), 2009. ISSN 0048-6604. doi: 10.1029/
    2008rs003911. URL: https://agupubs.onlinelibrary.wiley.com/
    doi/abs/10.1029/2008RS003911.
    [55] D. Riggin, W. E. Swartz, J. Providakes, and D. T. Farley. “Radar studies of
    long-wavelength waves associated with mid-latitude sporadic E layers.” Journal of
    Geophysical Research: Space Physics, 91(A7):8011–8024, 1986. ISSN 0148-0227.
    doi: 10.1029/JA091iA07p08011. URL: https://agupubs.onlinelibrary.
    wiley.com/doi/abs/10.1029/JA091iA07p08011.
    [56] Bernhard Hofmann-Wellenhof, Herbert Lichtenegger, and James Collins. “Global
    Positioning System : Theory and Practice.” Springer Vienna, fourth- revised edition,
    1997. ISBN 3709132975.
    [57] 林廷翰. “利用中壢特高頻雷達研究中緯度電離層散塊E層公尺級不規則體之動力
    行為.” National Central University, Master’s thesis, Taoyuan, 2008.
    [58] 陳承聖. “電離層散塊E 層不規則體之整合觀測研究.” National Central University,
    Master’s thesis, Taoyuan, 2012.
    [59] 張喻翔. “利用中壢特高頻雷達觀測散塊E 層及150 公里處不規則體之特性分析.”
    National Central University, Master’s thesis, Taoyuan, 2010.
    [60] 陳祥章. “中壢雷達三維輻射場型模擬與分析及系統建立.” National Central
    University, Master’s thesis, Taoyuan, 2005.
    [61] ICAO. “Technical Provisions for Mode S Services and Extended Squitter.” Doc
    / International Civil Aviation Organization ; 9871-AN/464. ICAO, Montréal, QC,
    Canada, 1 edition, 2008.
    [62] RTCA Inc. “Minimum Aviation System Performance Standards for Automatic Dependent
    Surveillance Broadcast (ADS-B).” DO-242A (including Change 1). RTCA
    Inc., Washington, DC, 2006.
    [63] RTCA Inc. “Minimum Operational Performance Standards for 1090 MHz Extended
    Squitter Automatic Dependent Surveillance - Broadcast (ADS-B) and Traffic Information
    Services - Broadcast (TIS-B).” DO-260B (with Corrigendum 1). RTCA Inc.,
    Washington, DC, 2011.
    [64] R. D. Grappel and R. T. Wiken. “Guidance material for mode s-specific protocol
    application avionics.” Lincoln Laboratory, Massachusetts Institute of Technology,
    2007.
    [65] R. W. Stewart, L. Crockett, D. Atkinson, K. Barlee, D. Crawford, I. Chalmers,
    M. Mclernon, and E. Sozer. “A low-cost desktop software defined radio design environment
    using MATLAB, simulink, and the RTL-SDR.” IEEE Communications
    Magazine, 53(9):64–71, 2015. ISSN 0163-6804. doi: 10.1109/MCOM.2015.7263347.
    [66] J. Z. Sun. “ADS-B Decoding Guide.” Report, 2017.
    [67] L. Vidal. “ADS-B Task force - KOLKATA: ADS-B Out and In - Airbus Status.”
    Report, 2013.
    [68] J. W. Hager, J. F. Behensky, and B. W. Drew. “DMA Technical Manual 8358.2 The
    Universal Grids: Universal Transverse Mercator (UTM) and Universal Polar Stereographic
    (UPS).” Report DMATM 8358.2, Defense Mapping Agency Hydrographic/
    Topographic Center, 1989.
    [69] NGA. “The Universal Grids and the Transverse Mercator and Polar Stereographic
    Map Projections.” Report NGA.SIG.0012, National Geospatial-Intelligence Agency,
    2014.
    [70] R. M. Jones and J. J. Stephenson. “A versatile three-dimensional ray tracing computer
    program for radio waves in the ionosphere.” Report OT Report 75–76, Office
    of Telecommunications, U. S. Department of Commerce, 1975.
    [71] J. W. Dungey. “The influence of the geomagnetic field on turbulence in the ionosphere.”
    Journal of Atmospheric and Terrestrial Physics, 8(1):39–42, 1956. ISSN0021-9169. doi: https://doi.org/10.1016/0021-9169(56)90089-7. URL: http://
    www.sciencedirect.com/science/article/pii/0021916956900897.
    [72] T. Nygrén, L. Jalonen, J. Oksman, and T. Turunen. “The role of electric field and
    neutral wind direction in the formation of sporadic E-layers.” Journal of Atmospheric
    and Terrestrial Physics, 46(4):373–381, 1984. ISSN 0021-9169. doi: https://doi.org/
    10.1016/0021-9169(84)90122-3. URL: http://www.sciencedirect.com/
    science/article/pii/0021916984901223.
    [73] J. A. Koehler, C. Haldoupis, K. Schlegel, and V. Virvilis. “Simultaneous observations
    of E region coherent radar echoes at 2-m and 6-m radio wavelengths at midlatitude.”
    Journal of Geophysical Research: Space Physics, 102(A8):17255–17265,
    1997. ISSN 0148-0227. doi: 10.1029/97ja01462. URL: https://agupubs.
    onlinelibrary.wiley.com/doi/abs/10.1029/97JA01462.
    [74] Bela G. Fejer, Jason Providakes, and Donald T. Farley. “Theory of
    plasma waves in the auroral E region.” Journal of Geophysical Research:
    Space Physics, 89(A9):7487–7494, 1984. ISSN 0148-0227. doi: 10.1029/
    JA089iA09p07487. URL: https://agupubs.onlinelibrary.wiley.com/
    doi/abs/10.1029/JA089iA09p07487.
    [75] R. N. Sudan, J. Akinrimisi, and D. T. Farley. “Generation of smallscale
    irregularities in the equatorial electrojet.” Journal of Geophysical
    Research (1896-1977), 78(1):240–248, 1973. ISSN 0148-0227. doi: 10.1029/
    JA078i001p00240. URL: https://agupubs.onlinelibrary.wiley.com/
    doi/abs/10.1029/JA078i001p00240.
    [76] 林庭安. “台灣上空電離層E 域頂層三公尺級電子密度不規則體:特性分析與研
    究.” National Central University, Master’s thesis, Taoyuan, 2014.
    [77] 葉力揚. “電離層散塊E 層層狀不規則體日夜特性分析.” National Central University,
    Master’s thesis, Taoyuan, 2012.
    [78] Potula Sree Brahmanandam, Yen Hsyang Chu, Ching-Lun Su, and Ting-Han Lin.
    “Daytime E-Region Irregularities during the 22 July 2009 Solar Eclipse over Chung-
    Li (24.9°N, 121.2°E), a Moderate Mid-Latitude Station.” Terrestrial, Atmospheric
    and Oceanic Sciences, 24(6):1021–1032, 2013. doi: 10.3319/tao.2013.07.08.01(aa).
    [79] W. I. Axford. “Note on a mechanism for the vertical transport of ionization in the
    ionosphere.” Canadian Journal of Physics, 39, 1961.
    [80] J. D. Whitehead. “The formation of the sporadic-E layer in the temperate zones.”
    Journal of Atmospheric and Terrestrial Physics, 20(1):49–58, 1961. ISSN 0021-
    9169. doi: https://doi.org/10.1016/0021-9169(61)90097-6. URL: http://www.
    sciencedirect.com/science/article/pii/0021916961900976.
    [81] W. I. Axford. “The formation and vertical movement of dense ionized layers
    in the ionosphere due to neutral wind shears.” Journal of Geophysical
    Research (1896-1977), 68(3):769–779, 1963. ISSN 0148-0227. doi: 10.1029/
    JZ068i003p00769. URL: https://agupubs.onlinelibrary.wiley.com/
    doi/abs/10.1029/JZ068i003p00769.
    [82] G. Chimonas and W. I. Axford. “Vertical movement of temperate-zone sporadic
    E layers.” Journal of Geophysical Research (1896-1977), 73(1):111–117, 1968.
    ISSN 0148-0227. doi: 10.1029/JA073i001p00111. URL: https://agupubs.
    onlinelibrary.wiley.com/doi/abs/10.1029/JA073i001p00111.
    [83] J. D. Mathews. “Sporadic E: current views and recent progress.” Journal
    of Atmospheric and Solar-Terrestrial Physics, 60(4):413–435, 1998. ISSN 1364-
    6826. doi: https://doi.org/10.1016/S1364-6826(97)00043-6. URL: http://
    www.sciencedirect.com/science/article/pii/S1364682697000436.
    [84] J. D. Whitehead. “Production and prediction of sporadic E.” Reviews
    of Geophysics, 8(1):65–144, 1970. ISSN 8755-1209. doi: 10.1029/
    RG008i001p00065. URL: https://agupubs.onlinelibrary.wiley.com/
    doi/abs/10.1029/RG008i001p00065.
    [85] J. D. Whitehead. “Recent work on mid-latitude and equatorial sporadic-E.”
    Journal of Atmospheric and Terrestrial Physics, 51(5):401–424, 1989. ISSN 0021-
    9169. doi: https://doi.org/10.1016/0021-9169(89)90122-0. URL: http://www.
    sciencedirect.com/science/article/pii/0021916989901220.
    [86] D. T. Farley Jr. “A plasma instability resulting in field-aligned irregularities in the
    ionosphere.” Journal of Geophysical Research (1896-1977), 68(22):6083–6097, 1963.
    ISSN 0148-0227. doi: 10.1029/JZ068i022p06083. URL: https://agupubs.
    onlinelibrary.wiley.com/doi/abs/10.1029/JZ068i022p06083.
    [87] A. Rogister and N. D’Angelo. “Type II irregularities in the equatorial electrojet.”
    Journal of Geophysical Research (1896-1977), 75(19):3879–3887, 1970.
    ISSN 0148-0227. doi: 10.1029/JA075i019p03879. URL: https://agupubs.
    onlinelibrary.wiley.com/doi/abs/10.1029/JA075i019p03879.
    [88] Takashi Tanaka and S. V. Venkateswaran. “Characteristics of field-aligned E-region
    irregularities over lioka (36°N), Japan—I.” Journal of Atmospheric and Terrestrial
    Physics, 44(5):381–393, 1982. ISSN 0021-9169. doi: https://doi.org/10.1016/
    0021-9169(82)90045-9. URL: http://www.sciencedirect.com/science/
    article/pii/0021916982900459.
    [89] H. Rishbeth and O. K. Garriott. “Introduction to ionospheric physics,” volume 14
    of International geophysics series. Academic Press, New York, 1969.
    [90] D. T. Farley, E. Bonelli, B. G. Fejer, and M. F. Larsen. “The prereversal enhancement
    of the zonal electric field in the equatorial ionosphere.” Journal of Geophysical
    Research: Space Physics, 91(A12):13723–13728, 1986. ISSN 0148-0227. doi: 10.
    1029/JA091iA12p13723. URL: https://agupubs.onlinelibrary.wiley.
    com/doi/abs/10.1029/JA091iA12p13723.
    [91] J. D. Mathews, D. W. Machuga, and Q. Zhou. “Evidence for electrodynamic linkages
    between spread-F, ion rain, the intermediate layer, and sporadic E: results
    from observations and simulations.” Journal of Atmospheric and Solar-Terrestrial
    Physics, 63(14):1529–1543, 2001. ISSN 1364-6826. doi: https://doi.org/10.
    1016/S1364-6826(01)00034-7. URL: http://www.sciencedirect.com/
    science/article/pii/S1364682601000347.
    [92] D. W. Machuga and J. D. Mathews. “Numerical simulations of three-dimensional
    E-region ion trajectories in realistic tidal wind and E-field structures: layer formation
    and transport.” Journal of Atmospheric and Solar-Terrestrial Physics, 63(14):
    1519–1528, 2001. ISSN 1364-6826. doi: https://doi.org/10.1016/S1364-6826(01)
    00033-5. URL: http://www.sciencedirect.com/science/article/
    pii/S1364682601000335.
    [93] C.-C. Lee, J.-Y. Liu, C.-J. Pan, and H.-H. Hsu. “The intermediate layers and
    associated tidal motions observed by a digisonde in the equatorial anomaly region.”
    Annales Geophysicae, 21(4):1039–1045, 2003. ISSN 0992-7689. URL:
    https://hal.archives-ouvertes.fr/hal-00317051.
    [94] Y. H. Chu, C. Y. Wang, K. H. Wu, K. T. Chen, K. J. Tzeng, C. L. Su, W. Feng,
    and J. M. C. Plane. “Morphology of sporadic E layer retrieved from COSMIC
    GPS radio occultation measurements: Wind shear theory examination.” Journal of
    Geophysical Research: Space Physics, 119(3):2117–2136, 2014. ISSN 2169-9380. doi:
    10.1002/2013ja019437. URL: https://agupubs.onlinelibrary.wiley.
    com/doi/abs/10.1002/2013JA019437.
    [95] Douglas P. Drob, John T. Emmert, John W. Meriwether, Jonathan J. Makela,
    Eelco Doornbos, Mark Conde, Gonzalo Hernandez, John Noto, Katherine A.
    Zawdie, Sarah E. McDonald, Joe D. Huba, and Jeff H. Klenzing. “An update
    to the Horizontal Wind Model (HWM): The quiet time thermosphere.”
    Earth and Space Science, 2(7):301–319, 2015. ISSN 2333-5084. doi: 10.
    1002/2014ea000089. URL: https://agupubs.onlinelibrary.wiley.
    com/doi/abs/10.1002/2014EA000089.
    [96] A. V. Gurevich, N. D. Borisov, and K. P. Zybin. “Ionospheric turbulence induced in
    the lower part of the E region by the turbulence of the neutral atmosphere.” Journal
    of Geophysical Research: Space Physics, 102(A1):379–388, 1997. ISSN 0148-0227.doi: 10.1029/96ja00163. URL: https://agupubs.onlinelibrary.wiley.
    com/doi/abs/10.1029/96JA00163.
    [97] M. F. Larsen. “A shear instability seeding mechanism for quasiperiodic radar
    echoes.” Journal of Geophysical Research: Space Physics, 105(A11):24931–24940,
    2000. ISSN 0148-0227. doi: 10.1029/1999ja000290. URL: https://agupubs.
    onlinelibrary.wiley.com/doi/abs/10.1029/1999JA000290.
    [98] K.B. Oldham, J. Myland, and J. Spanier. “An Atlas of Functions: with Equator, the
    Atlas Function Calculator.” Springer New York, 2010. ISBN 9780387488073. URL:
    https://books.google.com.tw/books?id=UrSnNeJW10YC.

    QR CODE
    :::