跳到主要內容

簡易檢索 / 詳目顯示

研究生: 胡明智
Ming-Jyh Hwu
論文名稱: 電子束微影技術於深次微米異質
Electron Beam Lithography Technology for the Application of Deep Sub-micron Heterostructure Field-Effect Transistors
指導教授: 詹益仁
Yi-Jen Chan
口試委員:
學位類別: 博士
Doctor
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 92
語文別: 英文
論文頁數: 104
中文關鍵詞: 場效應電晶體電子束微影技術
外文關鍵詞: Field-Effect Transistors, Electron Beam Lithography
相關次數: 點閱:13下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘 要
    通道摻雜異質接面場效應電晶體具有高電流推動能力,以及元件功率特性及效能。由於此高電流推動能力及熱穩定性,因此廣泛地應用在微波功率元件及高速元件上。
    然而閘極漏電流經常限制了通道摻雜異質接面場效應電晶體元件的功率特性,由其在高輸入功率時。先我們利用鐠金屬來加入鈦/金金屬閘極的製作,來改良元件之閘極漏電流,進而改善整體元件功率特性及效能。
    為了要大幅度增加功率元件的崩潰特性,多數製程採用雙重曝光暨雙重閘極蝕刻來改善元件崩潰電壓之特性,我們利用電子束微影設備來開發單次直寫微影技術配合乾蝕刻及溼蝕刻的雙重掘入技術來改善銦砷化磷-銦砷化鎵通道摻雜場效應電晶體的輸出功率特性。
    最後,我們利用埋入式鉑金屬技術來製作增強及空乏型深次微米T型閘極異質結構鋁砷化鎵-銦砷化鎵電晶體,進行一系列元件直流,高頻,以及功率方面之研究。接著我們完成增強及空乏型反相器及差動式放大器電路。


    ABSTRACT
    Doped-channel heterostructure field-effect transistors (DCFETs) with a high current density and superior microwave power performance was developed and characterized. Due to its excellent current driving capability and thermal stability, it has been widely investigated for microwave power devices and high-speed devices.
    However, gate leakage current always limits the power performance of DCFETs devices especially under a high input power swing. We interested in improving the Schottky gate performance by inserting a thin praseodymium (Pr) metal layer on the bottom of conventional Ti/Au gate in AlGaAs/InGaAs DCFET fabrication. We suppress the gate leakage current and enhance microwave power performance by Pr metal gate deposition.
    In chapter 3, we use the single exposure e-beam direct writing method plus the selective wet and dry etchings to fabricate double-recessed DCFETs (DR-DCFETs) and to improve device power performance. The 0.2 µm gate length InGaP/InGaAs DR-DCFET was developed and characterized.
    In chapter 4, we fabricated enhancement/depletion-mode AlGaAs/InGaAs sub-micron T-shape gate HEMTs by buried-Pt technique. The 0.2 µm gate length E-mode and D-mode AlGaAs/InGaAs HEMTs were developed and characterized. The dc, rf, and microwave power performance of the device will be presented. Furthermore, the E/D-Mode circuit was demonstrated, including inverter and differential amplifier.

    CHINESE ABSTRACT I ABSTRACT II FIGURE CAPTIONS XI TABLE CAPTIONS IX CHAPTER 1 INTRODUCTION 1.1 Overview of Field Effect Transistors 1 1.2 Objective and overview of The Dissertation 3 CHAPTER 2 IMPROVED GATE LEAKAGE AND MICROWAVE POWER PERFORMANCE BY INSERTING A THIN PRASEODYMIUM GATE METAL LAYER IN AlGaAs/InGaAs DCFETs 2.1 Introduction 7 2.2 Mechanism of Pr Gate Metal Deposition 8 2.3 Device Structures and Fabrication 11 2.4. Device Characterization and Gate-Leakage Improvement by Pr Gate metal 2.4.1 Schottky Barrier Height measurement 14 2.4.2 Dc Characterization and Gate-Leakage Improvement by Pr Gate metal 15 2.4.3 Rf Characterization 19 2.5 Theory of Load and Source Pull Microwave Power Measurement 23 2.6 Device Microwave Power Performance 27 2.7 Conclusions 29 CHAPTER 3 A NOVEL DOUBLE-RECESSED 0.2 μm T-GATE PROCESS FOR HETEROSTRUCTURE InGaP/InGaAs DCFETs FABRICATION 3.1 Introduction 30 3.2 The E-beam Lithography with Four-layers Photoresist 3.2.1The E-beam Lithography System 31 3.2.2 Four-layers Photoresist 37 3.3 Device Structure and Fabrication 42 3.4 Double-recessed DCFETs dc Characteristic 46 3.5 Microwave Power Enhancement by Double-Recessed Gate 48 3.6 Conclusions 51 CHAPTER 4 FABRICATION OF ENHANCEMENT/DEPLETION-MODE AlGaAs/InGaAs PSEDOMORPHIC HEMTs BY BURIED-PT GATE TECHNIQUE 4.1 Introduction 52 4.2 Device Structures and Fabrication Procedures 53 4.3 Dc Characteristics of the E-Mode and D-Mode HEMTs 57 4.4 Microwave Power Characteristic of the E-Mode and D-Mode HEMTs 61 4.5 Model of E-Mode AlGaAs/InGaAs HEMTs 4.5.1 Device Small-Signal Element Extraction 65 4.5.2 Device Large-Signal Model Establishment 73 4.6 E/D-Mode circuit demonstration 75 4.7 Conclusions 82 CHAPTER 5 CONCLUSIONS AND SUGGESTIONS FOR FUTURE STUDIES 5.1 Conclusions 83 5.2 Suggestions for Future Studies 84 REFERENCES 85 PUBLICATIONS 89

    [1] H. Craig Casey, JR., Device for integrated circuits, John Wiley & Sons.
    [2] P. N. Tung, P. Delescluse, D. Delagebeaudeuf, M. Laviorn, J. Chaplart and N. T. Linh, Elecrtron. Lett., vol. 18, pp.517, 1982.
    [3] M. Laviorn, D. Delagebeaudeuf, P. Delescluse, J. Chaplart and N. T. Linh, Electron. Lett., vol. 17, pp.536, 1981.
    [4] T. Henderson, M. I. Aksun, C. K. Peng, H. Morkoc, P. C. Chao, P. M. Smith, K. -H. G. Duh and L. F. Fester, IEEE Trans. Electron Devices, vol. 7, pp. 649, 1986.
    [5] Y. L. Lai, E. Y. Chang, C. Y. Chang, T. K. Chen, T. H. Liu, S. P. Wang, T. H. Chen, C. T. Lee, IEEE Electron Device Lett., vol. 17, pp. 229-231, 1996.
    [6] Y. C. Wang, J. M. Kuo, F. Ren, J. R. Lothian, J. S. Weiner, J. Lin, W. E. Mayo, Y. K. Chen, IEEE Electron Device Lett., vol. 18, pp. 550-552, 1997.
    [7] M. T. Yang, and Y. J. Chan, IEEE Trans. Electron Devices, vol. 43, pp. 1174-1180, 1996.
    [8] M. T. Yang, Ph.D Dissertation, National Central University, 1995.
    [9] S. M. Sze, High speed semiconductor device, Murray Hill, New jersey pp. 316,1990.
    [10] H. C. Chiu, S. C. Yang and Y. J. Chan, IEEE Electron Device Lett., vol. 23, pp. 1-3, 2002.
    [11] L.W. Yin, Y. Hwang, J. H. Lee, R. M. Kolbas, R. J. Trew, and U. K. Mishra, IEEE Electron Device Lett., vol. 11, pp. 561-563, 1990.
    [12] Y. Okamoto, K. Matsunaga, and M. Kuzuhara, Electron Lett., vol. 31, pp. 2216-2218, 1995.
    [13] W. S. Lour, J. H. Tasi, L. W. Laih and W. C. Lui,, IEEE Trans. Electron Devices, vol. 43, pp. 871-876, 1996.
    [14] J. P. Lin, M. J. Hwu and L. B. Chang, Jpn. J. Appl. Phys. vol. 37, pp. 1437-1439, 1998.
    [15] N. Iwata, K. Inosako, and M. Kuzuhara, IEEE MTT-S Int. Microwave Symp. Dig.,
    pp. 1465, 1993.
    [16] Ren, F., Hong, M.W., Hobson, W.S., Kuo, J.M., Lothian, J.R., Mannaerts, J.P., Kwo, J., Chen, Y.K., Cho, A.Y, IEDM Tech. Digest,( 1996) 943.
    [17] H. C. Chiu, S. C. Yang, F. T. Chien, and Y. J. Chan, ,IEEE Electron Device Lett., vol. 23, no.1, pp. 1-3, 2002.
    [18] J. C. Huang, P. Saledas, J. Wendler, A. Platzker, W. Boulais, S. Shanfield, W. Hoke, P. Lyman, L. Aucoin, A. Miquelarena, C. Bendard, and D. Atwood,, IEEE Electron Device Lett., vol. 14, pp. 456-458, 1993.
    [19] R. J. Trew and U. K. Mishra, IEEE Electron Device Lett., vol. 12, pp. 524-526, 1991.
    [20] R. Grundbacher, I. Adesida, Y. C. Kao and A. A. Ketterson, , J. Vac. Sci., Tech. B 15(1), pp 49 –53, 1997.
    [21] M. Hatzakis, J. Electrochem. Soc. 116, 1033-1037, 1969.
    [22] P. Rai-Choudhury, Handbook of Microlithography, Micromachining, and Microfabrication: Volume I, SPIE.
    [23] P. C. Chao, P. M. Smith, S. C. Palmateer, J. C. M. Hwang, IEEE Trans. Electron Devices, vol. 32, pp. 1042-1046, 1985.
    [24] T. Enoki, Y. Ishii, T. Tamamura, Intl. Conf. on InP and Related Materials, pp. 371-376, Japan, 1991.
    [25] K. H. G. Duh, P. C. Chao, S. M. J. Liu, P. Ho, M.Y. Kao, J. M Ballingall, IEEE Microwave and Guided Wave Lett, pp. 114-116, 1991.
    [26] F. Robin, H. Meier, O. J. Homan and W. Bachtold, , Intl. Conf. on InP and Related Materials, pp. 221 -224, 2002.
    [27] S.C. Yang, H.C. Chiu, F.T. Chien, Y.J. Chan and J.M. Kuo, IEEE Electron Device Lett., vol. 22, pp. 170-172, 2001.
    [28] D. G. Ballegeer, I. Adesida, C. Caneau, and R. Bhat, Int. Conf. InP and Related Materials, pp. 331–334, 1994.
    [29] N. Harada, S. Kuroda, and K. Hikosaka, , IEIC Trans., vol. 10, pp. 1165-1171, 1992.
    [30] N. Harada, S. Kuroda, Y. Watanabe, and K. Hikosaka, Electron Lett., vol. 29, pp. 2100-2101, 1993.
    [31] A. Mahajan, P. Fay, M. Arafa, and I. Adesida, IEEE Trans. Electron Devices, vol. 45, pp. 338-340, 1998.
    [32] Kevin J. Chen, Takatomo Enoki, Koichi Maezawa, Kunihiro Arai and Masafumi Yamamoto, IEEE Trans. Electron Devices, vol. 43, pp. 252-257, 1996.
    [33] A. Mahajan, M. Arafa, P. Fay, C. Caneau, and I. Adesida, IEEE Electron Devices Lett., vol. 18, pp. 284-286, 1997.
    [34]D. C. Dumka, W. E. Hoke, P. J. Lemonias, G. Cueva, I. Adesida, IEEE Electron Devices Lett., vol. 22, pp. 364-366, 2001.
    [35] L. Tang et al, IEEE Electron Device Lett., vol. 7, pp. 75-77, 1985.
    [36] R. Anholt, S. Swirhun, IEEE Trans. Microwave Theory Tech. Vol. 39 pp.1243~1247, 1991.
    [37] G. Dambrine et al, IEEE Trans. Microwave Theory Tech. vol. 36, pp.1511~1519, 1988.
    [38] W. Curtice, M. Ettenberg. IEEE Trans. Microwave Theory Tech. pp.1383~1394, 1985.
    [39] C. K. Lin, Mater Dissertation, National Central University, 2001.
    [40] M. Berroth, R. Bosch, IEEE Trans. Microwave Theory Tech. Vol. 38 pp.891~895, 1990.
    [41] S. M. Sze, High speed semiconductor device, Murray Hill, New jersey pp. 224,1990.
    [42] H. C. Chiu, Ph. D. Dissertation, National Central University, 2003.

    QR CODE
    :::