跳到主要內容

簡易檢索 / 詳目顯示

研究生: 陳柏宇
Po-Yu Chen
論文名稱: 微結構串接式綠光發光二極體在高溫操作下高速和高功率表現
Linear Cascade GaN Based Microstructure Green Light Emitting
指導教授: 許晉瑋
Jin-Wei Shi
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 電機工程學系
Department of Electrical Engineering
畢業學年度: 96
語文別: 中文
論文頁數: 44
中文關鍵詞: 氮化鎵發光二極體
外文關鍵詞: LED, GaN
相關次數: 點閱:6下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們證實串接式綠光發光二極體能應用在塑膠光纖的車內傳輸或惡劣環境中。三顆串接式綠光發光二極體能應用在汽車的特殊電壓12伏,量測變溫範圍從常溫到高溫120℃,其耦合功率隨著溫度升高的變化非常小(約-0.12%℃-1),我們的元件在塑膠光纖中傳輸(NA:0.3)能達到高速(約90MHz)和高耦合功率(0.9mW),即使操作在高電流下(100mA),我們的元件從常溫到高溫120℃也能通過150MHz的眼圖,量測結果指出我們元件的速度和總功率在塑膠光纖中傳輸跟現今商品共振腔紅光發光二極體比較起來對環境溫度的改變比較不敏感。


    In this paper, we demonstrated a linear cascade green light-emitting diode (LED) array for plastic optical fiber (POF) communication in car or in harsh environment. Under the whole range of measured temperature (room temperature (RT) to 120℃), our three-LEDs array driven by the constant voltage bias of in-car battery output (12V) exhibits a very small variation of coupled power vs. temperature (-0.12%℃-1 at RT) and achieves a high-speed (90MHz) and high coupled power (~0.9mW) to POF (NA:0.3). Even under high bias current (100mA) operation, our device can sustain a clear 150MHz eye-opening from RT to 120℃ operation. The static and dynamic measurement results indicate that both the speed and power performance of our device are more insensitive to the variation of ambient temperature as compared to those of red RCLED for POF communication.

    摘要 i Abstract ii 目錄 iii 圖表目錄 v 第一章 導論 1 §1-1 發光二極體之簡介 1 §1-2塑膠光纖展趨勢與其應用 3 §1-3 高速綠光與高速紅光的比較 7 §1-4 研究動機和論文架構 8 第二章 串接式氮化鎵發光二極體之分析 9 §2-1 氮化鎵發光二極體電流壅塞效應 9 §2-2 發光二極體調制速度之限制 13 §2-3 發光二極體對於車用所面臨問題 14 §2-4 串接式氮化鎵發光二極體 15 第三章 串接式氮化鎵發光二極體元件結構及製程 17 §3-1串接式氮化鎵發光二極體元件結構 17 §3-2串接式氮化鎵發光二極體製作結果與流程 19 第四章 串接式氮化鎵發光二極體量測結果與討論 29 §4-1.串接式氮化鎵發光二極體之電特性量測 29 §4-2.串接式氮化鎵發光二極體之光特性量測 30 §4-3.串接式氮化鎵發光二極體調變速度之量測 33 §4-4.串接式氮化鎵發光二極體之變溫特性量測 36 第五章 結論 40 參考文獻 41

    [1] Kevin Linthicum, Thomas Gehrke, Darren Thomson, Eric Carlson, Pradeep Rajagopal, Tim Smith, Dale Batchelor, and Robert Davis, “Pendeoepitaxy of gallium nitride thin films,” Appl. Phys. Lett.75,196(1999).
    [2] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, “Increase in the extraction efficiency of GaN-based light-emitting diodes via surface roughening,” Appl. Phys. Lett. 84, 855(2004).
    [3] Chul Huh, Kug-Seung Lee, Eun-Jeong Kang, and Seong-Ju Park, “Improved light-output and electrical performance of InGaN-based light-emitting diode by microroughening of the p-GaN surface,” J. Appl. Phys. 93, 9383(2003).
    [4] J. J. Wierer, D. A. Steigerwald, M. R. Krames, J. J. O’Shea, M. J. Ludowise, G. Christenson, Y-C, Shen, C. Lowery, P. S. Martin, S. Subramanya, W. Gotz, N. F. Garder, R. S. Kern, and S. A. Stockman, “High-power AlGaInN flip-chip light-emitting diodes,” Appl. Phys. Lett. 78, 3379(2001).
    [5] M. Koike, N. Koide, S. Asami, J. Umezaki, S. Nagai, S.Yamasaki, N. Shibata, H. Amano, and I. Akasaki, “InGaN/GaN multiple quantum wells green LEDs,” in Proc. SPIE International Society for Optical Engineering, vol.3002, pp.36-39(1997).
    [6] Sung-Pyo Jung, Chien-Hung Lin, Hon Man Chan, Zhiyong Fan, J. Grace Lu, and Henry P. Lee, “High transparency low resistance oxidized Ni/Au-ZnO contacts to p-GaN for high performance LED applications” phys. stat. sol. (a)201, no.12, 2827-2830(2004).
    [7] D. S. Wuu, W. K. Wang, W. C. Shih, R. H. Horng, C. E. Lee, W. Y. Lin, and J. S. Fang, “Enhanced output power of near-ultraviolet InGaN-GaN LEDs grown on patterned sapphire substrate,” IEEE Photon. Technol. Lett. , vol. 17, no. 2, Feb. 2005
    [8] MOST Cooperation, Specification Rev. 2.4, May, 2005.
    [9] B. Luecke, “Plastic optical fiber steps out of the niche,” Laser Focus World, pp. 91-95, April, 2008.
    [10] R. Wirth, B. Mayer, S. Kugler, and K. Streubel, “Fast LEDs for polymer optical fiber communication at 650nm,” Proc. of SPIE, vol. 6013, pp.60130F-1-60103F-8, SPIE, Bellingham, WA, 2005.
    [11] M. Akhter, P. Maaskant, B. Roycroft, B. Corbett, P. de Mierry, B. Beaumont and K. Panzer, “200Mbit/s data transmission through 100m of plastic fiber with nitride LEDs,” Electron. Lett., vol. 38, pp.1457-1458, Nov., 2002.
    [12] J.-W. Shi, H.-Y. Huang, J.-K. Sheu, C.-H. Chen, Y.-S. Wu, and W.-C. Lai, “The improvement in Modulation Speed of GaN-Based Light-Emitting Diode (LED) by Use of n-Type Barrier Doping for Plastic Optical Fiber (POF) Communication,” IEEE Photon. Technol. Lett., vol. 18, pp. 1636-1638, Aug., 2006.
    [13] J.-W. Shi, J.-K. Sheu, C.-K. Wang, C.-C. Chen, C.-H. Hsieh, J.-I. Chyi, and W.-C. Lai, “Linear Cascade Arrays of GaN Based Green Light Emitting Diodes for High-Speed and High-Power Performance,” IEEE Photon. Technol. Lett., vol. 19, pp. 1368-1370, Sep., 2007.
    [14] J.-W. Shi, J.-K. Sheu, C.-H. Chen, G.-R. Lin, and W.-C. Lai, “High-Speed GaN-based Green Light Emitting Diodes with Partially n-doped Active Layers and Current-Confined Apertures,” IEEE Electron Device Lett., vol. 29, pp. 158-160, Feb., 2008.
    [15] S. Y. Huang, R.-H. Horng, P. L. Liu, J. Y. Wu, H. W. Wu, and D. S. Wuu, “Thermal Stability Improvement of Vertical Conducting Green Resonant-Cavity Light-Emitting Diodes on Copper Substrates,” IEEE Photon. Technol. Lett., vol. 20, pp. 797-799, May, 2008.
    [16] A. Mednik, “Automotive LED Lighting Needs Special Drivers,” Power Electronics Technology, pp. 22-28, Aug., 2005.
    [17] J. D. Lambkin, B. McGarvey, M. O’Gorman and T. Moriarty, “RCLEDs for MOST and IDB 1394 Automotive Applications,” Proceedings of the 14th International Conference on Polymer Optical Fiber, Hong Kong, 2005.
    [18] Hyunsoo Kim, Ji-Myon Lee, Chul Huh, Sang-Woo Kim, Dong-Joon Kim, Seong-Ju Park, and Hyunsang Hwang, “Modeling of a GaN-based light-emitting diode for uniform current spreading,” Appl. Phys. Lett. 77,1903(2000).
    [19] Hyunsoo Kim, Seong-Ju Park, Hyunsang Hwang, “Lateral current transport path, a model for GaN-based light-emitting diodes: Applications to practical device designs,“ Appl. Phys. Lett. 81, 1326(2002).
    [20] X. Guo and E. F. Schubert, “Current Crowding and Optical Saturation Effects in GaInN/GaN Light-Emitting Diodes,” J. Appl. Phys. 78, 3337(2001).
    [21] E. F. Schubert, “LIGHT-EMITTING DIODE”, CAMBRIDGE UNIVERSITY PRESS.
    [22] C. C. Hsu, Y. C. Lee, S. P. Yang, P. S. Lee, M. L. Wu, and J. Y. Chang, ‘‘III-nitride Based LED with Omni-directional Light Extraction Enhancement,” 6th International Conference on Optics-photonics Design & Fabrication, Taipei, Taiwan, pp. 355-356, June, 2008.
    [23] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, “Hole Compensation Mechanism of P-Type GaN Films”,Jpn. J. Appl. Phys. 31,1258 (1992).
    [24] M. S. Minsky, M. White, and E. L. Hu,“Room-temperature photoenhanced wet etching of GaN”,Appl. Phys. Lett. 68, 1531 (1996).
    [25] C. Youtsey , I. Adesida , L. T. Romano and G. Bulman, “Smooth n-type GaN surfaces by photoenhanced wet etching”,Appl. Phys. Lett. 72, 560 (1997).
    [26] J. K. Sheu , Y. K. Su ,G. C. Chi ,W. C. Chen, C. Y. Chen, C. N. Huang,J. M. Hong,Y. C. Yu, C. W. Wang, and E. K. Lin,“The effect of thermal annealing on the Ni/Au contact of p-type GaN”, J. Appl. Phys. 83, 3172 (1998).
    [27] Li-Chien Chen, Fu-Rong Chen, Ji-Jung Kai,Li Chang,Jin-Kuo Ho, Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih,“Microstructural investigation of oxidized Ni/Au ohmic contact to p-type GaN ”, J. Appl. Phys. 86, 3826 (1999).
    [28] Jin-Kuo Ho , Charng-Shyang Jong, Chien C. Chiu, Chao-Nien Huang, Chin-Yuen Chen, and Kwang-Kuo Shih, “Low-resistance ohmic contacts to p-type GaN”, Appl. Phys. Lett. 74, 1275 (1999).
    [29] Y. Koide,S. Yamasaki, S. Nagai, J. Umezaki, M. Koike and Masanori Murakami,“Effects of surface treatments and metal work functions on electrical properties at p-GaN/metal interfaces”, J. Appl. Phys. 81, 1315 (1997).
    [30] P. Modh, S. Galt, J. Gustavsson, S. Jacobsson, and A. Larsson, “Linear Cascade VCSEL Arrays With High Differential Efficiency and Low Differential Resistance,” IEEE Photon. Technol. Lett., vol. 18, pp. 283-285, Jan., 2006.
    [31] M. Pessa, M. Guina, M. Dumitrescu, I. Hirvonen, M. Saarinen, L. Toikkanen, and N. Xiang, “Resonant cavity light emitting diode for a polymer optical fiber system,” Semicond. Sci. Technol., vol. 17, pp. R1-R9, May, 2002.
    [32]L. A. Coldren and S. W. Corzine, “Diode Lasers and Photonic Integrated Circuits.” JOHN WILEY & SONS, INC Chapter 4.

    QR CODE
    :::