| 研究生: |
范姜士燻 Shih-Hsun Fan Chiang |
|---|---|
| 論文名稱: |
使用資料探勘輔助學習者探索大型資料庫—學習者經驗之研究 Learner experience of exploring large databank with data mining support |
| 指導教授: |
劉晨鐘
Chen-Chung Liu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
資訊電機學院 - 網路學習科技研究所 Graduate Institute of Network Learning Technology |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 72 |
| 中文關鍵詞: | 搜尋策略 、資料探勘 、網路資源探索 |
| 外文關鍵詞: | search strategy, exploring information, Data mining |
| 相關次數: | 點閱:11 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
大量開放與急速成長的網路資訊增加了學習者對網路資訊探索時的困難度,如何利用結合網路的學習活動來進一步地協助學習者發展適當的學習策略,使學習者能獲取可靠正確的資訊以增進網路學習的成效已成為相關研究重視的議題。因此,為了協助學習者對於探索特定領域的相關概念以及建立概念間的關聯性,來提升其對於領域知識的理解,本研究利用概念圖法和資料探勘原理進行系統的設計與建置,提供學習者相關概念的推薦對於特定主題進行概念圖建置的環境進行相關實驗。受試者包含二十五名中央大學碩士生及博士生,研究工具包含網路資訊評判標準問卷、學習者行為分析及統計分析。學習者必須在本研究所發展具相關概念推薦功能及概念圖建置的系統中,對於所選定的主題進行概念圖的建置與發展。透過對於受試者在系統環境下所產生的資訊探索行為分析結果,本研究提出學習者對探索領域的豐富度、概念間的關聯程度、接受系統推薦概念程度及改變學習者對於探索領域的豐富度四個面向。此外,利用網路資訊評判標準問卷與使用者探索行為進行相關分析的結果發現持不同資訊評判標準與搜尋策略取向的學生也呈現出互異的探索行為。最後,本研究認為透過關聯法則來提供學習者相關的概念,能夠提升學習者對探索領域的概念理解及豐富化,並能夠透過系統輔助建立概念間關聯來幫助學習者建立複雜概念間的關聯,提升學習成效。
Because of the rapid growth of open-ended information on the Internet, learners may have difficulties in dealing with information sources for fulfilling one’s needs. For this reason, many studies have been devoted to the investigation on how to assist learners in developing proper strategies for acquiring reliable information and better learning outcome by use of Internet-based learning activity. To help learners explore relevant concepts and their interrelationships toward a particular domain, this study developed an Internet-based system that utilizes the concept map and association rule to provide learners more important concepts related to their pre-generated ones. The participants were 25 graduates studied in National Central University, and research tools included the system developed in this study and Information Commitments questionnaire for collecting research data. The participants were asked to construct a concept map toward a self-generated topic by use of the system incorporating recommend function with the concept mapping. Through analyzing students’ behavior of exploring information, this study proposed that students’ information-processing behavior could be categorized as ‘Richness of understanding,’ ‘Linking,’ ‘Acceptance of new ideas’ and ‘Change of richness of understanding.’ Furthermore, by analyzing the correlations between students’ information commitments and the factors of information-processing behavior, the results revealed that students with different information evaluative standards and searching approaches showed diverse information- processing patterns. Finally, this study suggested that that the recommended concept based on association rule could not help students acquire abundantly relevant concepts, but construct complex interrelations among concepts for developing in-depth understanding of relevant concepts toward a specific domain.
羅希哲, 溫漢儒, & 曾國鴻. 概念構圖融入電腦輔助教學法應用於綜合高中學生化學科之學習成效及態度之研究, 科學教育期刊, 15(2), 169-194, 2007.
Agrawal, R., Imielinski, T., & Swami, A. (1993). Mining association rules between sets of items in large databases [C]. Proceedings of the ACM SIGMOD Conference on Management of Data, 216
Berry, M. J., & Linoff, G. (1997). Data mining techniques: For marketing, sales, and customer support John Wiley & Sons, Inc. New York, NY, USA.
Bowman, C. M., Danzig, P. B., Manber, U., & Schwartz, M. F. (1994). Scalable internet resource discovery: Research problems and approaches. Communications of the ACM, 37(8), 98-107.
Butler, K. A., & Lumpe, A. (in press). Student use of scaffolding software: Relationships with motivation and conceptual understanding. Journal of Science Education and Technology, , 1-10.
Chen, M. S., Han, J., & Yu, P. S. (1996). Data mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering, 8(6), 866-883.
Cress, U., & Knabel, O. (2003). Previews in hypertexts: Effects on navigation and knowledge acquisition. Journal of Computer Assisted Learning, 19(4), 517-527.
Delphi Group (2004). Information Intelligence: Content Classification and the Enterprise Taxonomy Practice.
du Boucher-Ryan, P., & Bridge, D. (2006). Collaborative recommending using formal concept analysis. Research and Development in Intelligent Systems XXII: Proceedings of AI-2005, the Twenty-Fifth SGAI International Conference on Innovative Techniques and Applications of Artificial Intelligence, Cambridge, UK, December 2005,
Fernández-Cano, A., Torralbo, M., & Vallejo, M. (2004). Reconsidering price''s model of scientific growth: An overview. Scientometrics, 61(3), 301-321.
Grupe, F. H., & Owrang, M. M. (1995). DATA BASE MINING discovering new knowledge and competitive advantage. Information Systems Management, 12(4), 26-31.
Jonassen, D. H., Howland, J., Moore, J., & Marra, R. M. (2003). Learning to solve problems with technology: A constructivist perspective, 2nd. Ed. Columbus, OH: Merrill/Prentice-Hall.
Kinchin, I., & Hay, D. (2005). Using concept maps to optimize the composition of collaborative student groups: A pilot study. Journal of Advanced Nursing, 51(2), 182-187.
Kleissner, C., & Technol, A. (1998). Data mining for the enterprise. System Sciences, 1998., Proceedings of the Thirty-First Hawaii International Conference on, 7
Lin, C. Y. (1998). Assembly of topic extraction modules in SUMMARIST. in proceedings of the AAAI spring symposium on intelligent text summarization, stanford, CA, march 23-25. HP luhn. 1958. the automatic creation of literature abstracts. IBM Journal of Research and Development, 2(2), 159-165.
Linden, G., Smith, B., & York, J. (2003). Amazon. com recommendations: Item-to-item collaborative filtering.
Linn, M. C., Clark, D., & Slotta, J. D. (2003). WISE design for knowledge integration. Science Education, 87(4), 517-538.
Novak, J. D. (1982). The theory underlying concept maps and how to construct them. Cornell University,
Novak, J. D., & Gowin, D. B. (1984). Learning how to learn. Cambridge University Press.
Owrang, M., & Grupe, F. (1996). Using domain knowledge to guide database knowledge discovery. Expert Systems with Applications, 10(2), 173–180.
Recker, M., Dorward, J., & Nelson, L. M. (2004). Discovery and use of online learning resources: Case study findings. Educational Technology & Society, 7(2), 93-104.
Ruthven, K., Hennessy, S., & Deaney, R. (2005). Incorporating internet resources into classroom practice: Pedagogical perspectives and strategies of secondary-school subject teachers. Computers & Education, 44(1), 1-34.
Schoenberger, S. P., Toes, R. E., van der Voort, E. I., Offringa, R., & Melief, C. J. (1998). T-cell help for cytotoxic T lymphocytes is mediated by CD40-CD40L interactions. Nature, 393(6684), 480-483.
Shaw, M. J., Subramaniam, C., Tan, G. W., & Welge, M. E. (2001). Knowledge management and data mining for marketing. Decision Support Systems, 31(1), 127-137.
Sue, P. C., Weng, J. F., Su, J. M., & Tseng, S. S. A new approach for constructing the concept map. Advanced Learning Technologies, 2004.Proceedings. IEEE International Conference on, , 77-82.
Tsai, M. J., & Tsai, C. C. (2003). Information searching strategies in web-based science learning: The role of internet self-efficacy. Innovations in Education and Teaching International, 40(1), 43-50.
Wu, Y. T., & Tsai, C. C. (2005). Information commitments: Evaluative standards and information searching strategies in web-based learning environments. Journal of Computer Assisted Learning, 21(5), 374-385.