跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊淑惠
Shu-hui Yang
論文名稱: 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用
Fabrication of phosphorous-doped silicon nanocrystals embedded in silicon-rich oxide films and their applications on heterojunction solar cells
指導教授: 陳一塵
I-chen Chen
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學與工程研究所
Graduate Institute of Materials Science & Engineering
畢業學年度: 100
語文別: 中文
論文頁數: 58
中文關鍵詞: 異質接面太陽能電池電子迴旋共振化學氣相沉積系統含磷摻雜奈米矽晶
外文關鍵詞: ECR-CVD, phosphorous-doped silicon nanocrystals, heterojunction solar cells
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來在介電材料中形成含有磷或硼摻雜的奈米矽晶在光電元件、記憶體或是第三代太陽能電池上的應用皆受到相當大的關注。然而因為尺寸和高表面積與體積比,因此要在奈米矽晶中順利形成摻雜並非易事。而目前在製備含磷摻雜奈米矽晶的方法主要以濺鍍法或電漿輔助化學氣象沉積法再搭配高溫退火處理。而因電子迴旋共振化學氣象沉積(electron cyclotron resonance chemical vapor deposition, ECRCVD)相較於傳統的PE-CVD而言有沉積速率較快速、低離子轟擊、無電極汙染、較高的氣體使用率等優勢,因此本研究以ECR-CVD成長磷摻雜過飽和氧化矽薄膜(Si-rich oxide films)並以高溫熱退火處理使其在過飽和氧化矽薄膜中形成含磷摻雜之奈米矽晶,探討薄膜特性及其應用在矽基異質接面薄膜太陽能電池的表現。
    本研究將針對高溫退火後所析出之含磷摻雜奈米矽晶薄膜以UV-Visible、Raman、XPS等儀器分析薄膜之吸收率、結晶性及原子鍵結型態。探討在通入不同CO2/SiH4和PH3/SiH4的氣體比例下,可得到薄膜整體吸收低於20 %,且導電率在10-1 Ω-1 cm-1。再針對磷摻雜的濃度做優化,將薄膜研究結果應用在異質接面太陽電池上,在氧/矽比不同和有無外加透明導電膜(ITO)的條件下,用快速退火爐對電極進行低溫退火處理。目前初步得到太陽電池的轉換效率(η) = 6 %;開路電壓(Voc) = 490 mV;短路電流(Jsc) =17.51 mA;填充因子(FF) = 70.5 %。


    In recent years, fabrication of nanocrystalline silicon containing phosphorus or boron doped embedded in dielectric materials have attract many attentions because its potential such as in the optoelectronic components, memory or third-generation solar cells. However, doping of nanocrystals is not easy to be achieved due to their small size and large surface-to-volume ratios. At present, the method of preparation of phosphorus-doped silicon nanocrystals were sputtering or plasma-enhanced chemical vapor deposition with high-temperature annealing treatment. Compare to conventional PE-CVD, ECR-CVD have higher deposition rate, lower ion bombardment, no electrode contamination, higher gas usage and other advantages. In this study, electron cyclotron resonance chemical vapor deposition (ECR-CVD)were used to growth phosphorus-doped Si-rich oxide films, and to explore the film characteristics and the performance of silicon heterojunction thin film solar cells.
    In this study, we present a fabrication method for p-doped Si-NCs embedded in silicon oxide by thermal annealing of heavily P-doped hydrogenated amorphous silicon oxide (a-SiO:H) films grown by electron cyclotron resonance chemical vapor deposition (ECRCVD). The electrical and optical properties of the annealed films were investigated. Finally, we fabricate heterojunction cell with the optimized recipe of the window layer from the result that we investigated, and there we have the Electro-optic convert efficiency 6%, the open-circuit voltage (VOC) = 490 mV, short-circuit current density (JSC) = 17.51 m A/cm2, and the fill factor (FF) = 70.5%.

    目錄 摘要 i Abstract ii 誌謝 iv 目錄 vi 圖目錄 viii 表目錄 x 第一章 前言 1 第二章 文獻回顧 3 2.1 太陽電池發展現況 3 2.2 材料尺寸微縮後產生之量子化行為 5 2.2.1 量子尺寸效應 5 2.2.2 量子侷限效應 7 2.2 奈米矽晶過飽和氧化矽薄膜之特性 8 2.2.1 薄膜結晶性與微結構 10 2.2.2 摻雜原子對薄膜特性的影響 12 2.3 奈米矽晶的製備方法 13 2.3.1 離子佈植(ion implantation) + 熱退火製程 13 2.3.2 過飽和化學氣相沉積(supersaturated chemical vapor deposition) + 熱退火製程 14 2.3.3 濺鍍(sputtering) + 熱退火製程 15 2.3.4 反應式蒸鍍 + 熱退火製程 15 2.4 奈米矽晶在太陽能電池的應用 16 第三章 實驗流程 19 3.1 製備含磷摻雜的過飽和氧化矽薄膜 20 3.2 熱處理含磷摻雜的過飽和氧化矽薄膜 21 3.2.1 過飽和氧化矽薄膜 21 3.2.2 製備異質接面太陽能電池 22 3.3 熱處理前後之薄膜特性分析與電池表現 23 1. 拉曼光譜儀 (Raman spectroscopy) 24 2. 紫外可見光光譜儀(UV-visible spectrometer) 24 3. 光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 24 4. 電性量測(voltage-current measurement) 24 5. 量子轉換效率(quantum efficiency, QE) 24 6. 太陽模擬光量測系統(solar simulator) 25 第四章 結果與討論 26 4.1 含磷摻雜之過飽和氧化矽薄膜特性分析 26 4.1.1 光性探討 26 4.1.2 結晶性質與微結構分析 29 4.1.3 不同O/Si和摻雜濃度對電性與活化能的影響 31 4.2 太陽電池表現 35 4.2.1 電極先進行熱處理與否對於電池表現的影響 35 4.2.2 ITO和Al電極之沉積序列對電池表現的影響 39 4.2.3 ITO在不同退火溫度處理對電池表現的影響 41 第五章 結論 42 參考資料 43

    參考資料
    1. William Shockley and Hans J. Queisser, “Detailed Balance Limit of Efficiency of pn Junction Solar Cells”, J. Appl. Phys., 32, (1961), 510.
    2. D. M. Chapin, et al. “A New Silicon pn Junction Photocell for Converting Solar Radiation into Electrical Power”, J. Appl. Phys., 25, (1954), 676.
    3. Martin A. Green, “Third generation photovoltaics: solar cells for 2020 and beyond”, Physica E, 14, (2002), 65.
    4. Martin A. Green, et al. Fangsuwannarak, T., Puzzer, T., Conibeer, G. and Corkish, R., “ALL-SILICON TANDEM CELLS BASED ON “ARTIFICIAL” SEMICONDUCTOR SYNTHESISED USING SILICON QUANTUM DOTS IN A DIELECTRIC MATRIX”, 20th European Photovoltaic Solar Energy Conference, 6, Barcelona, Spain, June 2005.
    5. D.J. Lockwood, et al. Silicon Photonics II. Topics in Applied Physics, 119, (2011), 131.
    6. Andreas W. Bett, et al. “HIGHEST EFFICIENCY MULTI-JUNCTION CELL FOR TERRESTRIAL AND SPACE APPLICATIONS”, 24th European Photovoltaic Solar Energy Conference and Exhibition, 21, Hamburg, Germany, September 2009.
    7. G. Conibeer, et al. “Silicon quantum dot nanostructures for tandem photovoltaic cells”, Thin Solid Films, 516, (2008), 6748.
    8. Michael J Burns and Paul M Chaikin, “Interaction effects and thermoelectric power in low-temperature hopping”, J. Phys. C: Solid State Phys. 18 (1985) L74.
    9. P. F. Trwoga, et al. “Modeling the contribution of quantum confinement to luminescence from silicon nanoclusters”, J. Appl. Phys., 83, (1998), 3789.
    10. A. D. Yoffe, “Low-dimensional systems: quantum size effects and electronic properties of semiconductor microcrystallites (zero-dimensional systems) and some quasi-two-dimensional systems, Adv. Phys., 42, (1993), 173.
    11. L. E. Brus, “Electron–electron and electronhole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state”, J. Chem. Phys., 80, (1984), 4403.
    12. Tae-Wook Kim, et al. “Quantum confinement effect in crystalline silicon quantum dots in silicon nitride grown using SiH4 and NH3”, Appl. Phys. Lett., 88, (2006), 123102.
    13. Shinji Takeoka, et al. “Size-dependent photoluminescence from surface-oxidized Si nanocrystals in a weak confinement regime”, Phys. Rev. B , 62, (2000), 16820.
    14. Tae-Youb Kim, et al. “Quantum confinement effect of silicon nanocrystals in situ grown in silicon nitride films”, Appl. Phys. Lett., 85, (2004), 5355.
    15. Moon-Seung Yang, et al. “Effect of nitride passivation on the visible photoluminescence from Sinanocrystals”, Appl. Phys. Lett., 85, (2004), 3408.
    16. W. Boonkosum, et al. “Amorphous SiO:H thin film visible light emitting diode”, J. Non-Cryst. Solids, 198, (1996), 1226.
    17. L. Pavesi, et al. “Optical gain in silicon nanocrystals”, NATURE, 408, (2000), 440.
    18. Sandip Tiwari, et al. “A silicon nanocrystals based memory”, Appl. Phys. Lett., 68, (1996), 1377.
    19. L.A. Nesbit, “Annealing characteristics of Si-rich SiO2 films”, Appl. Phys. Lett., 46, (1985), 38.
    20. J. F. Tong, et al. “Adjustable emissions from silicon-rich oxide films prepared by plasma-enhanced chemical-vapor deposition”, Appl. Phys. Lett., 74, (1999), 2316.
    21. Gustavo M. Dalpian and James R. Chelikowsky, “Self-Purification in Semiconductor Nanocrystals”, Phys. Rev. Lett., 96, (22006), 226802.
    22. G. Cantele, et al. “First-principles study of n- and p-doped silicon nanoclusters”, Phys. Rev. B , 72, (2005), 113303.
    23. David J. Norris et al. “Doped Nanocrystals”, Science, 319, (2008), 1776.
    24. Young Suk Kim, et al. “Effects of N2 plasma treatment of titanium nitride/borophosphosilicate glass patterned substrates on metal organic chemical vapor deposition of copper”, Thin Solid Films, 349, (1999), 36.
    25. Eun-Chel Cho, et al. “Silicon quantum dot/crystalline silicon solar cells”, Nanotechnology., 19, (2008), 245201.
    26. X.J. Hao, et al. “Phosphorus-doped silicon quantum dots for all-silicon quantum dot tandem solar cells”, Solar Energy Materials & Solar Cells, 93, (2009), 1524.
    27. X. D. Pi, et al. “Light emission from Si nanoclusters formed at low temperatures”, Appl. Phys. Lett., 88, (2006), 103111.
    28. Tsutomu Shimizu-Iwayama, et al. “Optical properties of silicon nanoclusters fabricated by ion implantation”, J. Appl. Phys., 83, (1998), 6018.
    29. Z. H. Cen, et al. “Strong violet and green-yellow electroluminescence from silicon nitride thin films multiply implanted with Si ions”, Appl. Phys. Lett., 94, (2009), 041102.
    30. Z. H. Cen, et al. “Annealing effect on the optical properties of implanted silicon in a silicon nitride matrix”, Appl. Phys. Lett., 93, (2008), 023122.
    31. A. Hofgen, et al. “Annealing and recrystallization of amorphous silicon carbide produced by ion implantation”, J. Appl. Phys., 84, (1998), 4769.
    32. N.M. Park, et al. “Quantum Confinement in Amorphous Silicon Quantum Dots Embedded in Silicon Nitride”, Phys. Rev. Lett., 86, (2001), 1355.
    33. A. Sa’ar, et al. “Resonant Coupling between Surface Vibrations and Electronic States in Silicon Nanocrystals at the Strong Confinement Regime”, 5, (2005), 2443.
    34. Z.H. Lu, et al. “Quantum confinement and light emission in SiO2/Si superlattices”, Nature, 378, (1995), 258.
    35. Jian Zi, rt al. “Raman shifts in Si nanocrystals”, Appl. Phys. Lett., 69, (1996), 200.
    36. X.J. Hao, et al.” Effects of phosphorus doping on structural and optical properties of silicon nanocrystals in a SiO2 matrix”, Thin Solid Films, 517, (2009), 5646.

    QR CODE
    :::