跳到主要內容

簡易檢索 / 詳目顯示

研究生: 郭依羚
Yi-ling Kuo
論文名稱: 基於社群行為分析之階層化角色分類法
Hierarchical Role Classification based on Social Behavior Analysis
指導教授: 蔡孟峰
Meng-feng Tsai
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 資訊工程學系
Department of Computer Science & Information Engineering
畢業學年度: 98
語文別: 英文
論文頁數: 44
中文關鍵詞: 模糊集合理論社群偵測文件分類社群網路分析
外文關鍵詞: Fuzzy Set Theory, Community Detection, Document Classification, Social Network Analysis
相關次數: 點閱:20下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 社群網路分析是一種透過資訊技術來對映及測量個人、群體、組織等不同群體的方法,它能利用社交資訊或社交行為之收集,來分析出不同情境下之社群關係,近年來已經有許多人投入社群網路分析的行列。其中,以社群偵測和發現為較熱門的領域,它能找出隱藏的社群用以輔佐推薦系統。
    但是我們發現很少研究提到以階層化的方式去探討對抽象化社群的影響,因此,本篇論文的目的是設計一個藉由自動化產生的文章類別階層結合使用者有興趣之文章的角色分類分法。由實驗結果顯示,我們所提出的方法確實可以藉由階層化的方式提升分類的正確性。


    Social network analysis is a methodology to collect, analyze, and display the community relationship under different scenarios, it utilizes varied techniques to measure the social information, user-generated content, and social interaction. The last few years have seen a great deal of work on social network analysis. Community detection and discovery particularly is the most popular filed, and it can find the hidden communities to further analysis, such as community recommendation. However, role identification is a difficult job for many social network applications. One of the difficulties is to maintain and utilize large amount of distinct roles. And we found that there are few studies of any kind have examined the influence of using concept hierarchy to social network abstraction. In this paper, we attempt to adapt fuzzy classification method and construct a hierarchy for role classification, in other words, we want to design a role classification methodology based on the documents which users are interested in, and attempts to form the role hierarchy automatically then analyzes it. We believe this approach can encourage the utilization of social roles by considering their identifiable features at different levels.

    Chinese Abstract i English Abstrac ii Acknowledgment iii Table of Contents iv List of Figures vi List of Tables vii Chapter 1 Introduction 1 1-1 Motivation 1 1-2 Contribution 4 Chapter 2 Related Work 6 Chapter 3 System Architecture 11 Chapter 4 Methodology 14 4-1 Deep community 15 A. Social behavior classification based on fuzzy classification model 16 B. Concept hierarchy of category 18 C. Abstract community 20 Chapter 5 Experiment 23 5-1 Experimental data sets 23 5-2 Cosine similarity 24 5-3 SVM 25 5-4 Results and discussions 25 Chapter 6 Conclusion 34 Reference 35

    [1] Hildrum, K. and Yu, P.S. 2005. Focused community Discovery. In Proceedings of the Fifth IEEE International Conference on Data Mining (Houston, USA, November 27 - 30, 2005). 641-644.
    [2] Newman, M.E.J. 2006. Finding community structure in networks using the eigenvectors of matrices. Phys. Rev. E. 74, 036104 (September 11, 2006).
    [3] Cai, D., Shao, Z., He, X.,Yan, X., and Han, J. 2005. Mining hidden community in heterogeneous social networks. In Proceedings of the 3rd International Workshop on Link Discovery (Illinois, USA, August 21 – 24, 2005). 58 – 65.
    [4] J. Han and M. Kamber, Data Mining: Concepts and Techniques, MORGAN KAUFMANN PUBLISHERS, 2000.
    [5] Cheng-Te Lin, Shou-De Lin. Egocentric Information Abstraction for Heterogeneous Social Networks. In Proceedings of the 2009 International Conference on Advances in Social Network Analysis and Mining (Athens, Greece, July 20-22, 2009). 255-260.
    [6] Cuene, J. 2005. Web 2.0: Is It a Whole New Internet. http://cuene.typepad.com/MiMA.1.ppt.
    [7] O’Reilly, T. 2005. What Is Web 2.0 Design Patterns and Business Models for Next Generation of Software. http://oreilly.com/web2/archive/what-is-web-20.html.
    [8] Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res. (November 25, 1988). 10881-90.
    [9] Hartigan, J.A. and Wong, M.A. 1979. Algorithm AS 136: A k-means clustering algorithm. J. ROY. STAT. SOC. C-APP. (1979). 100-108.
    [10] Tantipathananandh, C., Berger-Wolf, T., and Kempe, D. 2007. A framework for community identification in dynamic social networks. In Proceedings of the 13th ACM SIGKDD International conference on Knowledge Discovery and Data Mining (San Jose, USA, August 12 - 15, 2007). 717-726.
    [11] Cai, D., Shao, Z., He, X.,Yan, X., and Han, J. 2005. Mining hidden community in heterogeneous social networks. In Proceedings of the 3rd International Workshop on Link Discovery (Illinois, USA, August 21 – 24, 2005). 58 – 65.
    [12] Chen, C., Yan, X., Zhu, F., Han, J., and Yu, P.S. 2009. Graph OLAP: a multi-dimensional framework for graph data analysis. Knowl. Inf. Syst. (October, 2009). 41 – 63.
    [13] Yoo, S., Yang, Y., Lin, F., and Moon, I-C. 2009. Mining social networks for personalized email prioritization. In Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (Paris, France, June 28 – July 1, 2009). 967—976.
    [14] Zaiane, O.R., Chen, J., and Goebel, R. 2007. DBconnect: mining research community on DBLP data. In Proceedings of the 9th WebKDD and 1st SNA-KDD 2007 Workshop on Web mining and Social Network Analysis (San Jose, USA, August 12 - 15, 2007). 74 – 81.
    [15] Yang, W-S and Dia, J-B. 2008. Discovering cohesive subgroups from social networks for targeted advertising. EXPERT. SYST. APPL. (April, 2008), 2029 - 2038.
    [16] Zhang, J., Tang, J., Liang, B., Yang, Z., Wang, S, Zuo, J., and Li, J. 2008. Recommendation over a heterogeneous social network. In Proceedings of the 2008 International Conference on Web-Age Information Management (Zhangjiajie, China, July 20 – 22, 2008), 309 – 316.
    [17] L.A. Zadeh, “Fuzzy Sets,” in D. Dubois, H. Prade, and R.R. Yager, editors, Reading in Fuzzy Sets for Intelligent Systems, Morgan Kaufmann Publishers, 1993.
    [18] Baeza-Yates, R.A. and Ribeiro-Neto, B. 1999. Modern Information Retrieval. Addison-Wesley Longman Publishing Co., Inc. Boston, MA, USA.
    [19] Choudhury, M. D., Sundaram, H., John, A., and Seligmann, D. D. (2009). Social Synchrony: Predicting Mimicry of User Actions in Online Social Media. In Proceedings of the 2009 IEEE International Conference on Social Computing (Vancouver, Canada, August 29-31, 2009).
    [20] http://digg.com The Latest News Headlines, Videos and Images.

    QR CODE
    :::