跳到主要內容

簡易檢索 / 詳目顯示

研究生: 謝明倫
Hsieh Min-Lun
論文名稱: 玻璃上易潔耐磨之透明薄膜
指導教授: 蔣孝澈
Anthony S.T. Chiang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程與材料工程學系
Department of Chemical & Materials Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 58
中文關鍵詞: 氧化鋯耐磨硬度抗指紋
外文關鍵詞: Zirconia, wear-resistant, Hardness, anti-fingerprint
相關次數: 點閱:26下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本研究中我們在玻璃基材上製作出一個透明且易潔、高硬度且耐磨的表面塗層。我們利用氧化鋯具有透明且高硬度的特色,配置了一系列可以在尋常環境下操作的氧化鋯塗料。然後在玻璃基材浸鍍出10~100奈米的透明薄膜。 450oC燒結後,此鍍層擁有接近19Gpa的硬度,可以承受鋼絲絨多次的摩擦。我們用原子力顯微鏡測量樣品的表面粗糙度並與耐磨耗性能做關聯。之後將磷酯類分子(alkyl phosphate)與二甲基矽酮 (PDMS)對氧化鋯表面進行改質,形成了對水滴及油滴均低滯留的表面,由而達到易潔的特性。最後,利用水平摩擦試驗機與奈米壓痕硬度機對樣品進行耐磨性及硬度的測量。


    An air stable zirconium sol was developed that produces a transparent and hard zirconium film on glass substrates by dip-coating method. A film with barely 10~20 nm thickness showed nearly 19Gpa indentation hardness after heat-treated at 450oC and withstood several hundred cycles of scratching with steel wool under load. We then proposed a relationship between the hardness, wear-resistance, and the roughness measured by AFM.
    Further modification of the wear-resistant film with alkyl phosphate or PDMS leads to a hydrophobic surface showing very small contact angle hysteresis to both water and hexadecane, thereby becomes easy-cleaning. The durability of the surface was confirmed by the boil-water test, the cross-cut test, and further by the steel wool scratch test. The best product we obtained could withstand 900 cycles of steel wool scratch under 1kg/1cm2 load and still maintain hydrophobic with low contact angle hysteresis for water and hexadecane.

    中文摘要 I Abstract II 圖目錄 V 表目錄 VI 第一章、緒論 1 1-1 背景與研究動機 1 第二章、文獻回顧 4 2-1 高硬度鍍膜 4 2-2 自潔表面 6 2-3 易潔表面 7 2-4 鋯與磷的強鍵結作用力 9 2-5 實驗構想 10 第三章、實驗步驟及方法 11 3-1 實驗架構: 11 3-2 實驗藥品 12 3-3 塗佈液配製 13 3-3-1 ZrO2@Ac sol 13 3-3-1-1氧化鋯合成 13 3-3-1-2 醋酸改質氧化鋯 14 3-3-1-3 ZrO2@Ac塗佈液配製 15 3-3-2 醋酸穩定之鋯塗佈液配製 16 3-3-2-1 ZBC-Ac sol 16 3-3-2-2 ZOC-Ac sol 16 3-3-3 ZBC-Ac + ZrO2@Ac sol 16 3-4 塗佈與燒結 18 3-4-1 基材清洗 18 3-4-2 浸鍍 18 3-4-3 熱處理溫度 18 3-4-3-1 TGA及FTIR 18 3-4-3-2 ZOC-Ac及ZBC-Ac樣品測試 20 3-5 表面改質 22 3-5-1 磷酸酯改質 22 3-5-2 PDMS改質 23 3-6性質測量方法 24 3-6-1 磨耗試驗 24 3-6-2 接觸角測試 26 3-6-3 原子力顯微鏡(AFM) 27 3-6-4 UV-vis 光譜量測 27 3-6-5 耐用性測試 28 第四章、實驗結果與討論 29 4-1 氧化鋯膜層定次磨擦荷重測量 29 4-2 AFM表面粗造度測量 31 4-3 ZOC-Ac樣品之磨耗試驗 32 4-3-1利用UV-vis的反射率計算膜厚 32 4-3-2鍍膜之硬度與耐磨耗能力 35 4-3-3不同玻璃基材的影響 38 4-4 接觸角量測 39 4-5-1 定重耐摩擦次數 41 4-5-2 其他耐性測試 41 4-5-3市面上之抗指紋鋼化玻璃耐用性分析 42 第五章、總結與未來展望 43 檢討與建議 44 參考文獻 45

    1. Oliaei, F., et al., PFOS and PFC releases and associated pollution from a PFC production plant in Minnesota (USA). Environmental Science and Pollution Research, 2013. 20(4): p. 1977-1992.
    2. Zhang, S., et al., Recent advances of superhard nanocomposite coatings: a review. Surface and Coatings Technology, 2003. 167(2-3): p. 113-119.
    3. Mehner, A., et al. Crystallization and residual stress formation of sol-gel-derived zirconia films. Thin Solid Films 1997 10/31/ [cited 308–309 0]; 363-368].
    4. Lucca, D.A., et al., Investigation of Sol-Gel Derived Zr02 Thin Films by Nanoindentation. CIRP Annals - Manufacturing Technology, 2004. 53(1): p. 475-478.
    5. Díaz-Parralejo, A., et al., Effect of N2 sintering atmosphere on the hardness of sol–gel films of 3 mol% Y2O3-stabilized ZrO2. Thin Solid Films, 2010. 518(10): p. 2779-2782.
    6. Ehrhart, G., et al., Effects of rare-earth concentration and heat-treatment on the structural and luminescence properties of europium-doped zirconia sol–gel planar waveguides. Optical Materials, 2007. 29(12): p. 1723-1730.
    7. Ehrhart, G., et al., Structural and optical properties of n-propoxide sol–gel derived ZrO2 thin films. Thin Solid Films, 2006. 496(2): p. 227-233.
    8. Zhang, H., et al., Mechanical and Optical Properties of Ion-exchange Strengthened Glass Coated with Sol-Gel Derived ZrO2-SiO2 Film. Journal of Inorganic Materials, 2013.
    9. Persson, C., et al., Nano grain sized zirconia–silica glass ceramics for dental applications. Journal of the European Ceramic Society, 2012. 32(16): p. 4105-4110.
    10. Nogami, M., Glass preparation of the ZrO2SiO2 system by the sol-gel process from metal alkoxides. Journal of Non-Crystalline Solids, 1985. 69(2): p. 415-423.
    11. Garcı́a-Heras, M., et al., Indentation properties of ZrO2–SiO2 coatings on glass substrates. Materials Research Bulletin, 2003. 38(11-12): p. 1635-1644.
    12. Castro, Y., et al., Silica-Zirconia Sol–Gel Coatings Obtained by Different Synthesis Routes. Journal of Sol-Gel Science and Technology, 2005. 35(1): p. 41-50.
    13. Uhlmann, I., et al., Structure and mechanical properties of silica doped zirconia thin films. Thin Solid Films, 2013. 527: p. 200-204.
    14. Li, X.-M., D. Reinhoudt, and M. Crego-Calama, What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chemical Society Reviews, 2007. 36(8): p. 1350-1368.
    15. Ohkubo, Y., et al., Preparation and characterization of super-hydrophobic and oleophobic surface. Journal of Materials Science, 2010. 45(18): p. 4963-4969.
    16. Parkin, I.P. and R.G. Palgrave, Self-cleaning coatings. Journal of Materials Chemistry, 2005. 15(17): p. 1689-1695.
    17. Liu, K. and L. Jiang, Bio-Inspired Self-Cleaning Surfaces. Annual Review of Materials Research, 2012. 42(1): p. 231-263.
    18. Masheder, B., et al., Novel transparent zirconium-based hybrid material with multilayered nanostructures: studies of surface dewettability toward alkane liquids. ACS Appl Mater Interfaces, 2013. 5(1): p. 154-63.
    19. Krumpfer, J.W. and T.J. McCarthy, Rediscovering silicones: "unreactive" silicones react with inorganic surfaces. Langmuir, 2011. 27(18): p. 11514-9.
    20. Guerrero, G., P.H. Mutin, and A. Vioux, Mixed Nonhydrolytic/Hydrolytic Sol−Gel Routes to Novel Metal Oxide/Phosphonate Hybrids. Chemistry of Materials, 2000. 12(5): p. 1268-1272.
    21. Guerrero, G., P.H. Mutin, and A. Vioux, Organically modified aluminas by grafting and sol-gel processes involving phosphonate derivatives. Journal of Materials Chemistry, 2001. 11(12): p. 3161-3165.
    22. Mutin, P.H., G. Guerrero, and A. Vioux, Hybrid materials from organophosphorus coupling molecules. Journal of Materials Chemistry, 2005. 15(35-36): p. 3761-3768.
    23. Zhang, B., et al., Surface Functionalization of Zinc Oxide by Carboxyalkylphosphonic Acid Self-Assembled Monolayers. Langmuir, 2010. 26(6): p. 4514-4522.
    24. Pawsey, S., et al., 1H Fast MAS NMR Studies of Hydrogen-Bonding Interactions in Self-Assembled Monolayers. Journal of the American Chemical Society, 2003. 125(14): p. 4174-4184.
    25. Blackwell, J.A. and P.W. Carr, Ion- and ligand-exchange chromatography of proteins using porous zirconium oxide supports in organic and inorganic Lewis base eluents. Journal of Chromatography A, 1992. 596(1): p. 27-41.
    26. Clearfield, A., Metal-phosphonate chemistry. Progress in inorganic chemistry, 1998. 47: p. 371-510.
    27. Clearfield, A. and J.A. Stynes, The preparation of crystalline zirconium phosphate and some observations on its ion exchange behaviour. Journal of Inorganic and Nuclear Chemistry, 1964. 26(1): p. 117-129.
    28. Blackwell, J.A. and P.W. Carr, Development of an eluotropic series for the chromatography of Lewis bases on zirconium oxide. Analytical Chemistry, 1992. 64(8): p. 863-873.
    29. 白謹通, 製備具再分散性之立方體奈米氧化鋯結晶粒子, in 化學工程與材料工程學系. 2012, 國立中央大學.
    30. Kolb, B.U., et al., Method of making zirconia-containing nanoparticles. 2014, Google Patents.
    31. Naszalyi Nagy, L., et al., Inherently fluorescent and porous zirconia colloids: preparation, characterization and drug adsorption studies. Journal of Materials Chemistry B, 2015. 3(38): p. 7529-7537.
    32. Li, J., X. Jiao, and D. Chen, Preparation of Zirconia Fibers via a Simple Aqueous Sol‐Gel Method. Journal of Dispersion Science and Technology, 2007. 28(4): p. 531-535.
    33. Mao, X., et al., Flexible and Highly Temperature Resistant Polynanocrystalline Zirconia Nanofibrous Membranes Designed for Air Filtration. Journal of the American Ceramic Society, 2016.
    34. Tarshiani, Y.Y. and S.A. Weber, Organosilane coating composition for ophthalmic lens. 1995, Google Patents.
    35. Tu, S.T. and D.H. Lorenz, Abrasion resistance radiation curable coating. 1982, Google Patents.
    36. Yamane, Y., et al., Fluorooxyalkylene group-containing polymer composition, a surface treatment agent comprising the same and an article treated with the agent. 2012, Google Patents.
    37. Prevo, B.G., Y. Hwang, and O.D. Velev, Convective Assembly of Antireflective Silica Coatings with Controlled Thickness and Refractive Index. Chemistry of Materials, 2005. 17(14): p. 3642-3651.
    38. Braun, M.M. and L. Pilon, Effective optical properties of non-absorbing nanoporous thin films. Thin Solid Films, 2006. 496(2): p. 505-514.
    39. del Río, J.A., R.W. Zimmerman, and R.A. Dawe, Formula for the conductivity of a two-component material based on the reciprocity theorem. Solid State Communications, 1998. 106(4): p. 183-186.
    40. Oliver, W.C. and G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992. 7(06): p. 1564-1583.

    QR CODE
    :::