跳到主要內容

簡易檢索 / 詳目顯示

研究生: 鄭又瑄
Yow-shiuan jeng
論文名稱: 螢光粉參數對於白光LED封裝效率之研究
The studies of power efficiency with different phosphor parameters in white LEDs
指導教授: 孫慶成
Ching-cherng Sun
口試委員:
學位類別: 碩士
Master
系所名稱: 理學院 - 光電科學與工程學系
Department of Optics and Photonics
畢業學年度: 99
語文別: 中文
論文頁數: 86
中文關鍵詞: 白光LED矽酸鹽螢光粉封裝效率
外文關鍵詞: silicate phosphor, power efficiency, white LED
相關次數: 點閱:10下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本篇論文我們針對矽酸鹽螢光粉濃度與厚度對於白光LED封裝效率的影響進行研究與分析。首先利用已建構之矽酸鹽螢光粉模型,以藍光雷射激發各種不同濃度與厚度的螢光粉薄片,分析其正向、側向及背向的能量,並以實驗驗證模擬結果,作為後續白光LED封裝效率比較的分析基礎。接著將激發光源改為藍光LED,在螢光粉遠離晶片的實驗架構下,比較不同濃度與厚度螢光粉對封裝效率的影響;此外也利用模擬改變封裝腔體的反射率,進一步分析螢光粉濃度、厚度與白光LED封裝效率之間的對應關係。


    In this thesis, we studied on the power efficiency with different phosphor concentrations and thicknesses in white LEDs. Based on our silicate phosphor model, we used a blue light laser to excite phosphor plates with different concentrations and thicknesses and analysis the forward power, sideward power and backward power of each phosphor plate in the first time. We also did the experiment to verify our simulation and then used the measurement results to analysis the power efficiency in white LEDs later. Secondly, we changed the light source from a blue light laser to a blue LED and researched the power efficiency with different phosphor concentrations and thicknesses under the remote phosphor configuration. Besides, we also changed the surface reflectance in the simulation in order to figure out the reciprocal effects among phosphor concentration, phosphor thickness and power efficiency in white LEDs.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VI 表目錄 XI 第一章 緒論 1 1.1 發光二極體之背景 1 1.2 研究動機 4 1.3 論文大綱 9 第二章 基本理論 10 2.1 引言 10 2.2 0LED發光原理 10 2.3 螢光粉發光原理 11 2.4 混光原理 13 2.5 白光LED之封裝效率 14 第三章 螢光粉薄片正向、側向及背向能量分析 16 3.1 引言 16 3.2 螢光粉粒子數之計算 16 3.3 螢光粉模型之介紹 20 3.4 實驗結果與模擬分析之比較 26 第四章 不同濃度與厚度螢光粉之封裝效率比較 46 4.1 引言 46 4.2 實驗結果之比較分析 46 4.3不同封裝腔體反射率出光效率之比較 52 第五章 結論 59 參考文獻 61 中英文名詞對照表 65

    [1] M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L.Zhou, G. Harbers, and M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” IEEE J. Display Technol. 3, 160-175 (2007).
    [2] R. D. Dupuis and M. R. Krames, “History, development, and applications of high-brightness visible light-emitting diodes,” IEEE J. Lightwave Technol. 26, 1154-1171 (2008).
    [3] E. F. Schubert and J. K. Kim, “Solid-state light source getting smart,” Science 308, 1274-1278 (2005).
    [4] D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. L. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron 8, 310-320 (2002).
    [5] N. Narendran, Y. Gu, J. P. Freyssinier-Nova, and Y. Zhu, “Extracting phosphor-scattered photons to improve white LED efficiency,” Phys. Stat. Sol. A 202, 60-62 (2005).
    [6] A. Zukauskas, M. S. Shur, and R. Caska, Introduction to solid-state lighting (John Wiley & Sons, New York, 2002).
    [7] Y. Shimizu, K. Sakano, Y. Noguchi, and T. Moriguchi, “Light emitting device having a nitride compound semiconductor and a phosphor containing a garnet fluorescent material,” United States Patent, US 5998925 (1999).
    [8] R. Mueller-Mach, G. O. Mueller, M. R. Krames, and T. Trottier, “High-power phosphor-converter light-emitting diodes based on III-Nitrides,” IEEE J. Sel. Top. Quantum Electron 8, 339-345 (2002).
    [9] JLEDs, http://www.led.or.jp/data/docs/JLEDS_Technical%20Report%20Vol2.pdf.
    [10] LEDinside, http://www.ledinside.com.tw/node/9288/.
    [11] LEDinside, http://www.ledinside.com.tw/node/11950/.
    [12] 孫慶成,螢光粉模型與LED 光色的控制,2010 LED 固態照明研討論文集,國立中央大學,中壢市,中華民國九十七年。
    [13] F. M. Steranka, J. C. Bhat, D. Collins, L. Cook, M. G. Craford, R. Fletcher, N. Gardner, P. Grillot, W. Goetz, M. Keuper, R. Khare, A. Kim, M. Krames, G. Harbers, M. Ludowise, P. S. Martin, M. Misra, G. Mueller, R. Mueller-Mach, S. Rudaz, Y. C. Shen, D. Steigerwald, S. Stockman, S. Subramanya, T. Trottier, and J. J. Wierer, “High power LEDs-technology status and market applications,” Phys. Stat. Sol. A 194, 380-388 (2002).
    [14] K. Wang, X. B. Luo, Z. Y. Liu, B. Zhou, Z. Y. Gan, and S. Liu, “Optical analysis of an 80-W light-emitting-diode street lamp,” Opt. Eng. 47, 013002 (2008).
    [15] J. K. Kim and E. F. Schubert, “Transcending the replacement paradigm of solid-state lighting,” Opt. Express 16, 21835-21842 (2008).
    [16] LEDinside, http://www.ledinside.com/node/10504/.
    [17] LEDinside, http://www.ledinside.com/node/9255/.
    [18] A. Zauskas, F. Ivanauskas, R. Vaicekauskas, M. S. Shur, and R. Gaska, “Optimization of mulitichip white solid state lighting source with four or more LEDs,” Proc. SPIE 4445, 148-155 (2001).
    [19] S. Muthu, F. J. P. Schuurmans, and M. D. Pashley, “Red, green, and blue LEDs for white light illumination,” IEEE J. Sel. Top. Quantum Electronics 8, 333-338 (2002).
    [20] Y. Sato, N. Takahashi, and S. Sato, “Full-color fluorescent display devices using a near-UV light-emitting diode,” Jpn. J. Appl. Phys. 35, 838-839 (1996).
    [21] T. F. McNulty, B. Lake, D. D. Doxsee, S. Hills, and J. W. Rose, “UV reflectors and UV-based light source having reduced UV radiation leakage incorporating the same,” United States Patent, US 6686676 B2 (2004).
    [22] P. Schlotter, R. Schmidt, and J. Schneider, “Luminescence conversion of blue light emitting diodes,” Appl. Phys. A 64, 417-418 (1997).
    [23] S. Nakamura and G. Fasol, The Blue Laser Diode: GaN based light emitters and lasers (Spinger, New York, 1997).
    [24] A. A. Setlur, A. M. Srivastava, H. A. Comanzo, and D. D. Doxsee, “Phosphor blends for generating white light from near-UV/blue light-emitting devices,” United States Patent, US 6685852 B2 (2004).
    [25] C. C. Yang, C. M. Lin, Y. Chen, Y. T. Wu, S. R. Chuang, S. F. Huand, and R. S. Liua, “Highly stable three-band white light from an InGaN-based blue light emitting diode chip precoated with (oxy)nitride green/red phosphors,” Appl. Phys. Lett. 90, 123503 (2007).
    [26] Y. H. Won, H. S. Jang, K. W. Cho, Y. S. Song, D. Y. Jeon, and H. K. Kwon, “Effect of phosphor geometry on the luminous efficiency of high-power white light-emitting diodes with excellent color rendering property,” Opt. Lett. 34, 1-3 (2009).
    [27] ENERGY STAR, http://www.energystar.gov/index.cfm?c=ssl_res.pt_ssl/.
    [28] R. Mirhosseini, M. F. Schubert, S. Chhajed, J. Cho, J. K. Kim, and E. F. Schubert “Improved color rendering and luminous efficacy in phosphor-converted white light-emitting diodes by use of dual-blue emitting active regions,” Opt. Express 17, 10806-10813 (2009).
    [29] Y. Ohno, “Color rendering and luminous efficacy of white LED spectra,” Proc. SPIE 5530, 88-98 (2004).
    [30] J. K. Sheu, C. H. Kuo, S. J. Chang, Y. K. Su, L. W. Wu, Y. C. Lin, J. M. Tsai, R. K. Wu, and G. C. Chi, “White-light emission from near UV InGaN-GaN LED chip precoated with blue/green/red phosphors,” IEEE Photon. Technol. Lett. 15, 18-20 (2003).
    [31] R. J. Xiea, N. Hirosak, N. Kimura, K. Sakuma, and M. Mitomo, “2-phosphor-converted white light-emitting diodes using oxynitride/nitride phosphors,” Appl. Phys. Lett. 90, 191101-191103 (2007).
    [32] N. Kimura, K. Sakuma, S. Hirafune, K. Asano, N. Hirosaki, and R. J. Xie, “Extrahigh color rendering white light-emitting diode lamps using oxynitride and nitride phosphors excited by blue light-emitting diode,” Appl. Phys. Lett. 90, 051109-051111 (2007).
    [33] J. P. You, N. T. Tran, and F. G. Shi, “Light extraction enhanced white light-emitting diodes with multi-layered phosphor configuration,” Opt. Exp. 18, 5055-5060 (2010).
    [34] H. Luo, J. K. Kim, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Analysis of high-power packages for phosphor-based white-light-emitting diodes,” Appl. Phys. Lett. 86, 243505 (2005).
    [35] S. C. Allen and A. J. Steckl, “A nearly ideal phosphor-converted white light-emitting diode,” Appl. Phys. Lett. 92, 143309 (2008).
    [36] B. F. Fan, H. Wu, Y. Zhao, Y. L. Xian, and G. Wang, “Study of phosphor thermal-isolated packaging technologies for high-power white light-emitting diodes,” IEEE Photon. Technol. Lett. 19, 1121-1123 (2007).
    [37] Z. Y. Liu, S. Liu, K. Wang, and X. B. Luo, “Optical analysis of color distribution in white LEDs with various packaging methods,” IEEE Photon. Technol. Lett. 20, 2027-2029 (2008).
    [38] J. K. Kim, H. Luo, E. F. Schubert, J. Cho, C. Sone, and Y. Park, “Strongly enhanced phosphor efficiency in GaInN white light-emitting diodes using remote phosphor configuration and diffuse reflector cup,” Jpn. J. Appl. Phys. 44, 649-651 (2005).
    [39] R. C. Jordan, J. Bauer, and H. Oppermann, “Optimized heat transfer and homogeneous color converting for ultra high brightness LED package,” Proc. SPIE 6198, 61980-B 1-12 (2006).
    [40] S. C. Allen and A. J. Steckl, “ELiXIR-solid-state luminaire with enhanced light extraction by internal reflection,” IEEE J. Display Technol. 3, 155-159 (2007).
    [41] K. Yamada, Y. Imai, and K. Ishii, “Optical simulation of light source devices composed of blue LEDs and YAG phosphor,” J. Light & Vis. Env. 27, 70-74 (2003).
    [42] 陳靜儀,矽酸鹽螢光粉用於白光LED之光學模型,國立中央大學光電所碩士論文,中華民國九十七年。
    [43] N. T. Tran and F. G. Shi, “Studies of phosphor concentration and thickness for phosphor-based white light-emitting-diodes,” J. Lightwave Technol. 26, 3556-3559 (2008).
    [44] Cree Inc., http://www.cree.com/products/pdf/XLampML_SH.pdf.
    [45] Cree Inc., http://www.cree.com/products/pdf/XLampXM_SolderingandHandling.pdf.
    [46] C. C. Chen, C. Y. Chen, W. T. Chien, T. H. Yang, and C. C. Sun, “Optical performance as a function of phosphor particle number in white LED,” Proc. SPIE 7786, 778606 (2010).
    [47] D. A. Neamen, Semiconductor Physics and Devices: Basic Principles (McGraw-Hill, New York, 2003).
    [48] E. F. Schubert, Light Emitting Diodes (Cambridge University Press, New York, 2006).
    [49] 劉如熹、劉宇恒,發光二極體用氧氮螢光粉介紹,全華圖書股份有限公司,台北縣,中華民國九十五年。
    [50] 高逢時,黑夜的精靈─螢光體,科學發展期刊,第三百六十七期,64-69頁,中華民國九十二年。
    [51] 劉如熹、王健源,白光發光二極體製作技術-21世紀人類的新曙光,全華圖書股份有限公司,台北縣,中華民國九十四年。
    [52] 大田 登,色彩工程學:理論與應用,全華圖書股份有限公司,台北縣,中華民國九十六年。
    [53] R. Tasker, R. N. Bhargava, J. Barone, V. Chhabra, V. Chabra, D. Dorman, A. Ekimov, S. Herko, and B. Kulkarni, “Quantum-confined atom-based nanophosphors for silid state lighting,” Proc. SPIE 5187, 133-141 (2003).
    [54] R. Mueller-Mach, G. O. Mueller, and M. R. Krames, “Phosphor materials and combinations for illumination grade white pcLED,” Proc. SPIE 5187, 115-122 (2003).
    [55] A. Borbely and S. G. Johnson, “Performance of phosphor-coated light emitting diode optics in ray-trace simulations,” Opt. Eng. 44, 111308 (2005).
    [56] 何信穎,白光LED 之YAG 螢光粉光學模型之研究,國立中央大學光電所碩士論文,中華民國九十六年。
    [57] 張容瑄,綠橘雙色矽酸鹽螢光粉光學模型之建立與分析,國立中央大學光電所碩士論文,中華民國九十九年。
    [58] C. C. Sun, C. Y. Chen, H. Y. He, C. C. Chen, W. T. Chien, T. X. Lee, and T. H. Yang, “Precise optical modeling for silicate-based white LEDs,” Opt. Express 16, 20060-20066 (2008).
    [59] 紀葦世,高效能YAG螢光粉之特性量測與模型,元智大學光電所碩士論文,中華民國九十九年。
    [60] Intematix Co., http://intematix.com/files/images/Catalog-2010.pdf.
    [61] N. T. Tran, J. P. You, and F. G. Shi, “Effect of phosphor particle size on luminous efficacy of phosphor-converted white LED,” J. Lightwave Technol. 27, 5145-5150 (2009).

    QR CODE
    :::