| 研究生: |
蔡鈞揚 Chun-yang Tsai |
|---|---|
| 論文名稱: |
鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究 The Electromigration of Al(Cu)/Ni Redistribution Layer in Through Silicon Via |
| 指導教授: |
吳子嘉
Albert T. Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 98 |
| 語文別: | 中文 |
| 論文頁數: | 67 |
| 中文關鍵詞: | 矽通孔 、電遷移 、三維晶片 |
| 外文關鍵詞: | 3D-IC, electromigration, TSV, through silicon via |
| 相關次數: | 點閱:6 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為了因應未來電子產品輕薄短小的需求,三維晶片為極佳之解決方案,矽通孔在其中扮演了重要的角色,但缺乏可靠度相關資訊,同時於轉換製程中成本的支出也為問題之一,在本實驗中利用現有封裝製程使用之機器製作鋁(銅)-鎳混合導線於矽通孔內,並於100oC~350oC與5x105 A/cm2的電流密度下進行電遷移加速測試,並與同溫度下退火之試片進行比較。
在實驗中發現,每段矽通孔之鋁導線有著各自獨立但相同之結果,而100 oC與150 oC下通電之試片於通電50小時後電阻僅上升3%,200oC下通電之試片則上升11%,並可於陽極發現突起及陰極處發現孔洞,350oC下通電之試片於50小時內燒毀,而Al2Cu為標準實驗條件下唯一生成之化合物,鋁鎳的化合物僅於標準實驗條件外之極嚴苛狀況才會生成,若比較退火之試片與通電之試片可發現, Al2Cu會於陽極處有較明顯生成且尺寸較大,陰極處則反之,經由計算後發現於100oC~200oC下銅原子有效擴散係數約為10-13~10-14 cm2/s。
實驗中並利用模擬的方式對矽通孔底部轉角處進行電流密度分佈的分析,發現在Al2Cu生成後,可以將側壁上之鋁導線的電流有效分散至鎳導線,並可降低最大約40%的電流密度,此一發現對未來將導線製作於矽通孔下時之電流分佈提供良好之資訊。
For the demands of “slim and light” electronic devices, 3D-IC technique is the most important technique, and Through Silicon Via(TSV) is an important role in this technique. However, the information of reliability is rare. In this thesis, hybrid Al(Cu)-Ni conducting lines were tested at 100oC~350oC with various current densities. The results were in comparison with thermal annealed samples.
In our results, the phenomena were the same in all the TSV segments. The resistances of 100oC and 150oC samples increased about 3% after current stressing. The resistance of 200oC sample increased about 11%. There were hillocks formed at anode and voids formed at cathode in each segment. The 350oC sample did not pass the test with the current density of 5x105 A/cm2. Al2Cu was the only type of compounds formed in the standard experimental conditions, and the Al-Ni compounds only formed in extreme testing conditions. The distribution of Al2Cu is different between samples with or without current. Large compounds formed at each anode side of the samples with current and fine compounds formed at each cathode side. The effective diffusion coefficient was calculated to be about 10-13~10-14 cm2/s at conditions of 100oC~200oC.
Simulations were employed in this experiment to analyze the distribution of current densities at corners of bottom TSVs when compounds were formed. Al2Cu was found to disperse the current from Al lines to the Ni lines effectively and dramatically reduced the maximum current density about 40%. These observations would be helpful for manufacturer of interconnects with TSV process in the future.
參考文獻
1. PRESS KIT - Intel® System on Chip (SoC), http://www.intel.com/pressroom/kits/soc/photos.htm
2. Amkor Technology: System in Package (SiP), http://www.amkor.com/go/packaging/all-packages/system-in-package-sip-/system-in-package-sip
3. S. F. Al-sarawi, D. Abbott, and P. D. Franzon, “A Review of 3-D Packaging Technology”, IEEE Trans. Compon. Packag. Manuf. Technol. Part B: 21, 2 (1998)
4. W. C. Lo, S. M. Chang, Y. H. Chen, J. D. Ko, T. Y. Kuo, H. H. Chang, and Y. C. Shih, “3D Chip-to-Chip Stacking with Through Silicon Interconnects”, in Proc. Int’l Symp. on VLSI Technology, Systems, and Applications (VLSI-TSA), 72 (2007)
5. S. Spiesshoefer, Z. Rahman, G. Vangara, S. Polamreddy, S. Burkett, and L. Schaper, “Process Integration for Through-Silicon Vias”, J. Vac. Sci. Technol., A 23, 824 (2005)
6. C. S. Song, Z. Y. Wang, Q. W. Chen, J. Cai, and L. T. Liu, “High Aspect Ratio Copper Through-Silicon-Vias for 3D Integration”, Microelectron. Eng. 85, 1952 (2008)
7. M. Motoyoshia, and M. Koyanagia, “3D-LSI Technology for Image Sensor”, J. Instrum. The Pixel 2008 Workshop, JINST 4 P03009 (2009)
8. S. L. Wright, P. S. Andry, E. Sprogis, B. Dang, R. J. Polastre, “Reliability Testing of Through-Silicon Vias for High-Current 3D Applications”, Proc. 58th Electronic Components and Technology Conf., 879 (2008)
9. D. Q. Yu, T. C. Chai, M. L. Thew, Y. Y. Ong, V. S. Rao, L. C. Wai, J. H. Lau, “Electromigration Study of 50 μm Pitch Micro Solder Bumps using Four-Point Kelvin Structure”, Proc. 59th Electronic Components and Technology Conf., 930 (2009)
10. K. V. Reddy, F. Beniere, D. Kostopoulosb, and J. Y. Le Traon, “Electromigration and Diffusion of Copper in Aluminum Thin Films”, J. Appl. Phys. 50, 2782 (1979)
11. W. B. Lee, K. S. Bang, and S. B. Jung, “Effects of Intermetallic Compound on The Electrical and Mechanical Properties of Friction Welded Cu/Al Bimetallic Joints during Annealing”, J. Alloys Compd. 390, 212 (2005)
12. M. Braunović, and N. Alexandrov, “Intermetallic Compounds at Aluminum-to-Copper Electrical Interfaces: Effect of Temperature and Electric Current”, IEEE Trans. Compon. Packag. Manuf. Technol. Part A: 17, 78 (1994)
13. H. B. Aaron, and H. I. Aaronson, “Growth OF Grain Boundary Precipitates in Al-4% Cu by Interfacial Diffusion”, Acta Metall. 16, 789 (1968)
14. M.B. Small, D.A. Smith, and A.J. Garratt-Reed, “Segregation of Copper in Dilute Aluminum - Copper Alloys”, Scr. Metall. Mater. 30, 1531 (1994)
15. M. Copel, K. P. Rodbell, and R. M. Tromp, “Cu Segregation at The Al(Cu)/Al2O3 Interface”, Appl. Phys. Lett. 68, 1625 (1996)
16. E. G. Colgan, M. Nastasi, and J. W. Mayer, “Initial Phase Formation and Dissociation in The Thin-Film Ni/Al System”, J. Appl. Phys. 58, 4125 (1985)
17. E.G. Colgan, and J. W. Mayer, “Diffusion Markers in Al/Metal Thin-Film Reactions”, Nucl. Instrum. Methods Phys. Res., Sect. B 17, 242 (1986)
18. X. A. Zhao, H. Y. Yang, E. Ma, and M. A. Nicolet, “Kinetics of NiAl3 Growth Induced by Steady-State Annealing at the Ni-<Al> interface”, J. Appl. Phys. 62, 1821 (1987)
19. E. Ma, M. A. Nicolet, and M. Nathan, “ NiAl3 Formation in Al/Ni Thin-Film Bilayers with and without Contamination”, J. Appl. Phys. 65, 2703 (1989)
20. E. Ma, C. V. Thompson, and L. A. Clevenger, “Nucleation and Growth during Reactions in Multilayer AI/Ni Films: The Early Stage of Al3Ni Formation”, J. Appl. Phys. 69, 2211 (1991)
21. E. Fonda, F. Petroff, and A. Traverse, “Structural Study of The Al3Ni Interface in Ultrathin Polycrystalline Multilayers”, J. Appl. Phys. 93, 5937 (2003)
22. L. Damoc, E. Fonda, P. Le Fevre, and A. Traverse, “Structural Characterization of Ni–Al (111) Interface by Surface X-ray Absorption Apectroscopy”, J. Appl. Phys. 92, 1862 (2002)
23. A. S. Edelstein, R. K. Everett, G. Y. Richardson, S. B. Qadri, E. I. Altman, J. C. Foley, and J. H. Perepezko, “Intermetallic Phase Formation during Annealing of Al/Ni Multilayers”, J. Appl. Phys. 76, 7850 (1994)
24. L. Battezzati, P. Pappalepore, F. Durbiano, and I. Gallino, “Solid State Reactions in Al/Ni Alternate Foils Induced by Cold Rolling and Annealing”, Acta. Mater. 47, 1901 (1999)
25. F.Z. Chrifi-Alaoui, M. Nassik, K. Mahdouk, and J.C. Gachon, “Enthalpies of Formation of The Al–Ni Intermetallic Compounds”, J. Alloys Compd. 364, 121 (2004)
26. V. H. Garcia, P. M. Mors, and C. Scherer, “Kinetics of Phase Formation in Binary Thin Films: The Ni/Al Case”, Acta. Mater. 48, 1201 (2000)
27. H. B. Huntington, and A.R. Grone, “Current-Induced Marker Motion in Gold Wires”, J. Phys. Chem. Solids 20, 76 (1961)
28. K. N. Tu, “Recent Advances on Electromigration in Very-Large-Scale-Integration of Interconnects”, J. Appl. Phys. 94, 5451 (2003)
29. J. R. Black, “Electromigration Failure Modes in Aluminum Metallization for Semiconductor Devices”, Proc. IEEE 57, 1587 (1969)
30. K. N. Tu, “Electromigration in Stressed Thin Films”, Phys. Rev. B 45, 1409 (1992)
31. I. A. Blech, “Electromigration in Thin Aluminum Films on Titanium Nitride”, J. Appl. Phys. 47, 1203 (1976)
32. Q. T. Huynh, C. Y. Liu, Chih Chen, and K. N. Tu, “Electromigration in Eutectic SnPb Solder Lines”, J. Appl. Phys. 89, 4332 (2001)
33. I. Ames, F. M. d''Heurle, and R. E. Horstmann, “Reduction of Electromigration in Aluminum Films by Copper Doping”, IBM J. Res. Dev. 14, 461 (1970)
34. C. K. Hu, M. B. Small, and P. S. Ho, “Electromigration in Al Two-Level Structures: Effect of Cu and Kinetics of Damage Formation”, J. Appl. Phys. 74, 969 (1993)
35. P. S. Ho, and J. K. Howard, “Nonlinear Propagation of Void Front during Electromigration in Alloy Films”, Appl. Phys. Lett. 27, 261 (1975)
36. K. V. Reddy, F. Beniere, D. Kostopoulos, and J. Y. Le Traon, “Electromigration and Diffusion of Copper in Aluminum Thin Films”, J. Appl. Phys. 50, 2782 (1979)
37. C. Kim, and J. W. Morris, Jr, “The Influence of Cu Precipitation on Electromigration Failure in Al-Cu-Si”, J. Appl. Phys. 72, 1837 (1992)
38. E. G. Colgan, and K. P. Rodbell, “The Role of Cu Distribution and Al2Cu Precipitation on The Electromigration Reliability of Submicrometer Al Lines”, J. Appl. Phys. 75, 3423 (1994)
39. C. L. Liu, X. Y. Liu, and L. J. Borucki, “Defect Generation and Diffusion Mechanisms in Al and Al–Cu”, Appl. Phys. Lett. 74, 34 (1999)
40. H. H. Solak, G. F. Lorusso, S. Singh-Gasson, and F. Cerrina, “An X-ray Spectromicroscopic Study of Electromigration in Patterned Al(Cu) Lines”, Appl. Phys. Lett. 74, 22 (1999)
41. E. Kinsbron, “A Model for The Width Dependence of Electromigration Lifetimes in Aluminum Thin-film Stripes”, Appl. Phys. Lett. 36, 968 (1980)
42. D. T. Walton, H. J. Frost, and C. V. Thompson, “Development of Near-Bamboo and Bamboo Microstructures in Thin-Film Strips”, Appl. Phys. Lett. 61, 40 (1992)
43. M. L. Dreyer, and C. J. Varker, “Electromigraton Activation Energy Dependence on AlCu Interconnect Linewidth and Microstructure”, Appl. Phys. Lett. 60, 1860 (1992)
44. C. K. Hu, “Electromigration Failure Mechanisms in Bamboo-Grained Al(Cu) Interconnections”, Thin Solid Films 260, 124 (1995)
45. I. A. Blech, “Copper Electromigration in Aluminum”, J. Appl. Phys. 48, 473 (1977)
46. P. C. Wang, I. C. Noyan, S. K. Kaldor, J. L. Jordan-Sweet, E. G. Liniger, and C. K. Hu, “Real-Time X-ray Microbeam Characterization of Electromigration Effect in Al(Cu) Wires”, Appl. Phys. Lett. 78, 2712 (2001)
47. C. Witt, C. A. Volkert, and E. Arzt, “Electromigration-Induced Cu Motion and Precipitation in Bamboo Al–Cu Interconnects”, Acta Mater. 51, 49 (2003)
48. W. C. Liu, S. W. Chen, and C. M. Chen, “The Al/Ni Interfacial Reactions under the Influence of Electric Current”, J. Electron. Mater. 27, L5 (1998)
49. Everett C. C. Yeh, and K. N. Tu, “Numerical Simulation of Current Crowding Phenomena and Their Effects on Electromigration in Very Large Scale Integration Interconnects”, J. Appl. Lett. 88, 5680 (2002)
50. C. Macchioni, J, A, Rayne, S. Sen, and C. L. Bauer, “Low Temperature Resistivity of Thin Film and Bulk Ssamples of CuA12 and Cu9A14”, Thin Solid Films 81, 71 (1981)
51. H. K. Kao, G. S. Cargill III, and C. K. Hu, “Electromigration of Copper in Al(0.25 at.% Cu) Conductor Lines”, J. Appl. Phys. 89, 2588 (2001)