跳到主要內容

簡易檢索 / 詳目顯示

研究生: 許正煜
Hsu, Cheng-Yu
論文名稱: 用過核子燃料最終處置場遠場之熱、力學、熱-力學及水力-力學耦合分析
指導教授: 張瑞宏
Chang, Jui-Hung
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 247
中文關鍵詞: 用過核子燃料深層地質處置場遠場耦合熱-水-力學分析
外文關鍵詞: spent fuel, deep geologic repository far field, thermo-hydro-mechanical coupling analysis
相關次數: 點閱:9下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以瑞典核子燃料及廢棄物管理公司提出之「深層地質處置」概念為基礎,參考瑞典及國內相關文獻對於處置場尺寸與廢料罐潛在位置分佈之設計,且考慮母岩之熱、力學、熱-力學及水力-力學特性,並以有限元素軟體ABAQUS進行熱-水-力耦合分析。
    本研究主題一「處置場遠場之溫度場影響研析」為針對廢料罐處置後放射性核種仍持續釋放之衰變熱來進行研析,首先,進行處置場遠場之熱傳導平行驗證,本文於各觀測線之趨勢及分析結果皆與相關文獻相當接近,溫度脈衝在大約300年後到達地表,在兩處置區域之間與中央設施區域之最大溫度增量明顯較低,約5至10°C (直接通過處置區域處約為25°C),並且發生的時間要晚得多,約發生於1000年後(直接通過處置區域處約為100年附近)。
    本研究主題二「處置場遠場之熱應力及地表隆起影響研析」為接續主題一之溫度場分析結果,平行驗證案例於各觀測線之各向應力趨勢及結果皆與文獻相近,並在直接通過處置區域處有最大之應力分析結果。
    本研究主題三「處置場遠場之剪切位移及水力傳導度影響研析」為接續主題二之熱應力分析結果,分析時以剪切位移及水力傳導度兩個主題進行研析,首先,本文根據相同裂縫半徑下得出之最大剪切位移,發現垂直處置區域之觀測線的裂縫更加穩定;最後,當正向應力降低時,水力傳導度可能會隨之增加,因此最大的潛在不穩定性裂縫出現在與非處置區域垂直的位置。


    This research is based on the “deep geological disposal” proposed by the Swedish Nuclear Fuel and Waste Management Company (SKB). On the basis of this concept, thermal, mechanical, thermo-mechanical, hydro-mechanical properties of the rock along with the layouts of the repository size and potential canister locations are analyzed. The following three topics are examined with the thermo-hydro-mechanical coupling analysis performed by the finite element software ABAQUS.
    The first topic, The Influence of the Temperature Distribution in the Repository Far Field, focuses on the heat released by reason of radionuclide delay after canisters are deposited. The parallel verification of the heat transfer in the repository far field showed the temperature pulse reached the ground surface after about 300 years. Moreover, the maximum temperature increased between the two deposition areas and the central area was significantly lower (around 5-10°C) than it was directly through the deposition area (about 25°C). In addition, it occurred much later (about 1,000 years later) compared to it did directly through the deposition area (around 100 years later). These trends are consistent with the previous literature.
    Following the results of temperature field analysis from Topic 1, the next topic is The Influence of Thermally-Induced Stresses in Repository Far Field and Heave of the Ground Surface. In line with past studies, the results showed the maximum stresses were found directly through the deposition area.
    The final topic is The Influence of Shear Displacement and Hydraulic Transmissivity in Repository Far Field, continuing thermally-induced stress study from Topic 2.The analysis includes the shear displacement and hydraulic transmissivity. Based on the maximum shear displacement calculated under the same fracture radius, fractures perpendicular to the scanlines of the deposition areas were more stable. Furthermore, the hydraulic transmissivity increased as the normal stress decreased. Therefore, the maximum potential unstable fractures appeared in the deposition areas non-perpendicular to fractures.

    摘要 i ABSTRACT ii 致謝 iv 目錄 v 圖目錄 xii 表目錄 xxi 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 2 1.3 研究主題與方法 2 1.4 論文內容 3 第二章 文獻回顧 4 2.1 我國用過核子燃料之現況 4 2.1.1 我國核能電廠現況 6 2.1.2 我國用過核子燃料最終處置時程規劃 8 2.1.3 我國高放射性廢棄物最終處置相關規定 9 2.2 各國地質處置概念發展現況 13 2.2.1 深層地質處置概念的全球發展現況 13 2.2.2 各國安全論證介紹 15 2.3 THMC相關研究 19 2.3.1 熱傳導分析 19 2.3.2 水-力學分析 19 2.4 國外文獻研析 21 2.5 深層地質處置場安全評估 24 第三章 理論與數值模擬方法 29 3.1 前言 29 3.2 熱力學分析理論 30 3.2.1 熱傳導 30 3.2.2 熱對流 33 3.2.3 熱輻射 33 3.3 水與力學分析理論 34 3.3.1 力學理論 34 3.3.2 孔隙水流理論 36 3.3.3 熱-水-力學分析理論 37 3.4 數值分析理論 38 3.4.1 有限元素法 38 3.4.2 本研究分析工具 41 第四章 處置場遠場之溫度場影響研析 42 4.1 前言 42 4.2 處置場遠場之熱傳導平行驗證 43 4.2.1 三維模型幾何之建立 43 4.2.2 材料參數及組成模式 47 4.2.3 廢料罐之初始衰變熱與熱衰變函數 49 4.2.4 熱傳導分析之初始條件與邊界條件 51 4.2.5 熱傳導分析之平行驗證結果討論 52 4.3 處置場遠場之熱傳導材料參數影響分析 59 4.3.1 案例介紹 59 4.3.2 熱傳導係數改變之熱傳導影響分析 59 4.3.2.1材料參數介紹 59 4.3.2.2熱傳導係數改變結果討論 60 4.3.3 比熱容參數改變之熱傳導影響分析 64 4.3.3.1材料參數介紹 64 4.3.3.2比熱容係數改變結果討論 65 4.3.4 熱傳導分析之材料參數最大影響組合 69 4.3.4.1材料參數介紹 69 4.3.4.2熱傳導分析之材料參數最大影響組合結果討論 71 4.4 廢料罐數量及類型之熱傳導影響分析 80 4.4.1 案例介紹 80 4.4.2 三維模型幾何及材料參數 80 4.4.3 廢料罐數量改變之熱傳導影響分析 82 4.4.3.1初始衰變熱及熱衰變函數之改變 82 4.4.3.2廢料罐數量改變結果討論 83 4.4.4 BWR(40MWd/kgU)型廢料罐之熱傳導影響分析 86 4.4.4.1初始衰變熱及熱衰變函數之改變 86 4.4.4.2 BWR(40MWd/kgU)型廢料罐結果討論 88 4.4.5 EPR(50MWd/kgU)型廢料罐之熱傳導影響分析 91 4.4.5.1初始衰變熱及熱衰變函數之改變 91 4.4.5.2 EPR(50MWd/kgU)型廢料罐結果討論 93 4.4.6 EPR(60MWd/kgU)型廢料罐之熱傳導影響分析 97 4.4.6.1初始衰變熱及熱衰變函數之改變 97 4.4.6.2 EPR(60MWd/kgU)型廢料罐結果討論 99 4.4.7 VVER(41MWd/kgU)型廢料罐之熱傳導影響分析 103 4.4.7.1初始衰變熱及熱衰變函數之改變 103 4.4.7.2 VVER(41MWd/kgU)型廢料罐結果討論 105 4.5 處置場幾何之熱傳導影響分析 109 4.5.1 案例介紹 109 4.5.2 材料參數及組成模式 110 4.5.3 處置區域厚度改變之熱傳導影響分析 110 4.5.3.1三維模型幾何介紹 111 4.5.3.2處置區域厚度改變結果討論 111 4.5.4 處置區域深度改變之熱傳導影響分析 115 4.5.4.1三維模型幾何介紹 115 4.5.4.2處置區域深度改變之結果討論 116 第五章 處置場遠場之熱應力及地表隆起影響研析 125 5.1 前言 125 5.2 處置場遠場之熱應力及地表隆起平行驗證 126 5.2.1三維模型幾何之建立 126 5.2.2材料參數及組成模式 126 5.2.3廢料罐之初始衰變熱與熱衰變函數 127 5.2.4應力及地表隆起分析之初始條件與邊界條件 128 5.2.5熱應力及地表隆起平行驗證 128 5.2.5.1熱應力之平行驗證結果討論 128 5.2.5.2地表隆起之平行驗證結果討論 135 5.3 處置場遠場之熱應力及地表隆起材料參數影響分析 139 5.3.1 案例介紹 139 5.3.2 熱傳導係數改變之熱應力影響分析 139 5.3.2.1材料參數介紹 139 5.3.2.2熱傳導係數改變之熱應力結果討論 140 5.3.3 比熱容參數改變之熱應力影響分析 143 5.3.3.1材料參數介紹 143 5.3.3.2比熱容係數改變之熱應力結果討論 144 5.3.4 楊氏模數改變之熱應力影響分析 147 5.3.4.1材料參數介紹 147 5.3.4.2楊氏模數改變之熱應力結果討論 148 5.3.5 波松比參數改變之熱應力影響分析 151 5.3.5.1材料參數介紹 151 5.3.5.2波松比參數改變之熱應力結果討論 152 5.3.6 熱膨脹係數改變之熱應力影響分析 155 5.3.6.1材料參數介紹 155 5.3.6.2熱膨脹係數改變之熱應力結果討論 156 5.3.7 熱應力及地表隆起之材料參數最大影響組合 159 5.3.7.1材料參數介紹 159 5.3.7.2材料參數最大影響組合之熱應力結果討論 162 5.3.7.3材料參數最大影響組合之地表隆起結果討論 165 5.4 廢料罐數量及類型之熱應力及地表隆起影響分析 167 5.4.1 案例介紹 167 5.4.2 三維模型幾何及材料參數介紹 167 5.4.3 廢料罐數量改變之熱應力及地表隆起影響分析 168 5.4.3.1初始衰變熱及熱衰變函數之改變 169 5.4.3.2廢料罐數量改變之熱應力結果討論 169 5.4.3.3廢料罐數量改變之地表隆起結果討論 171 5.4.4 BWR(40MWd/kgU)之熱應力影響分析 172 5.4.4.1初始衰變熱及熱衰變函數之改變 173 5.4.4.2 BWR(40MWd/kgU)型廢料罐之熱應力結果討論 173 5.4.5 EPR(50MWd/kgU)型廢料罐之熱應力影響分析 175 5.4.5.1初始衰變熱及熱衰變函數之改變 175 5.4.5.2 EPR(50MWd/kgU)型廢料罐之熱應力結果討論 175 5.4.6 EPR(60MWd/kgU)型廢料罐之熱應力影響分析 178 5.4.6.1初始衰變熱及熱衰變函數之改變 178 5.4.6.2 EPR(60MWd/kgU)型廢料罐之熱應力結果討論 178 5.4.7 VVER(41MWd/kgU)型廢料罐之熱應力影響分析 182 5.4.7.1初始衰變熱及熱衰變函數之改變 182 5.4.7.2 VVER(41MWd/kgU)型廢料罐之熱應力結果討論 182 5.5 處置場幾何之熱應力及地表隆起影響分析 185 5.5.1 案例介紹 185 5.5.2 材料參數及組成模式 186 5.5.3 處置區域厚度改變之熱應力及地表隆起影響分析 187 5.5.3.1三維模型幾何介紹 187 5.5.3.2處置區域厚度改變之熱應力結果討論 187 5.5.3.3處置區域厚度改變之地表隆起結果討論 190 5.5.4 處置區域深度改變之熱應力及地表隆起影響分析 193 5.5.4.1三維模型幾何介紹 193 5.5.4.2處置區域深度改變之熱應力結果討論 193 5.5.4.3處置區域深度改變之地表隆起結果討論 196 第六章 處置場遠場之剪切位移及水力傳導度影響研析 199 6.1 前言 199 6.2 處置場遠場之剪切位移分析 199 6.2.1 分析方法 199 6.2.2 結果討論 200 6.3 處置場遠場之水力傳導度分析 203 6.3.1 分析方法 203 6.3.2 結果討論 204 第七章 結論與建議 212 7.1 結論 212 7.2 建議 216 參考文獻 217

    [1] 經濟部能源局網站:108_109年度全國電力資源供需報告。取自https://www.moeaboe.gov.tw/ECW/populace/content/ContentLink2.aspx?menu_id=48&sub_menu_id=8749
    [2] 行政院原子能委員會網站:高放射性廢棄物最終處置設施場址規範。取自http://erss.aec.gov.tw/law/LawContent.aspx?id=GL000065#lawmenu
    [3] 行政院原子能委員會網站:高放射性廢棄物最終處置及其設施安全管理規則。取自http://erss.aec.gov.tw/law/LawContent.aspx?id=FL036833#lawmenu
    [4] 我國用過核子燃料最終處置技術可行性評估報告(SNFD2017)
    [5] 台灣電力公司核能後端營運網站。取自https://nbmi.taipower.com.tw/%E9%AB%98%E6%94%BE%E5%9C%8B%E9%9A%9B%E7%B6%93%E9%A9%97new/
    [6] 行政院原子能委員會網站。取自https://www.aec.gov.tw/
    [7] 原子能委員會放射性物料管理局網站。取自https://www.aec.gov.tw/fcma/
    [8] SKB, “Water saturation phase of the buffer and backfill in the KBS-3V concept” , TR-06-14, August 2006.
    [9] SKB , Final repository facility.Underground design premises/D2.R-07-33, Svensk Kärnbränslehantering AB.
    [10] SKB, Site engineering report Forsmark. Guidelines for underground design Step D2.R-08-83, Svensk Kärnbränslehantering AB.
    [11] SKB, Site Engineering Report Design Step D2.Guidelines For UndergroundDesign.LaxemarSite.R-08-88,SvenskKärnbränslehantering AB.
    [12] SKB, THM-issues in repository rock.Thermal,mechanical,thermo-mechanical and hydro-mechanical evolution of the rock at the Forsmark and Laxemar sites. TR-10-23 ,Svensk Kärnbränslehantering AB
    [13] SKB, Underground design Forsmark Layout D2.R-08-116, Svensk Kärnbränslehantering AB.
    [14] SKB,. Site description of Forsmark at completion of the site investigation phase.SDM-Site Forsmark.SKB TR-08-05,Svensk Kärnbränslehantering AB.
    [15] SKB, “Buffer, backfill and closure process report for the safety assessment SR-Site” , TR-10-47, November 2010.
    [16] SKB, Strategy for thermal dimensioning of the final repository for spent nuclear fuel. R-09-04, Svensk Kärnbränslehantering AB.
    [17] SKB, Site descriptive modelling Forsmark stage 2.1. Feedback for completion of the site.investigation including input from safety assessment and repository engineering. R-06-38,Svensk Kärnbränslehantering AB.
    [18] POSIVA, Thermal Dimensioning for the Olkiluoto Repository-2018 Update.WR¬2018-26,Kari Ikonen,Juha kuutti,Heikki Raiko
    [19] SKB, What requirements does the KBS-3 repository make on the host rock? Geoscientific suitability indicators and criteria for siting and site evaluation,SKB Technical Report, TR-00-12, Andersson, J., Ström, A., Svemar, C., Almén,K.E and Ericsson, L.O.
    [20] The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, Vol. 241, No. 1226,
    [21] SKB, Literature survey: Relations between stress change, deformation and transmissivity for fractures and deformation zones based on in situ investigatons. R-09-13, Svensk Kärnbränslehantering AB.
    [22] SKB, Hydrogeological conceptual model development and numerical modelling using CONNECTFLOW, Forsmark modelling stage 2.3.R-08-23, Svensk Kärnbränslehantering AB.
    [23] SKB, Hydrogeological characterisation and modelling of deformation zones and fracture domains, Forsmark modelling stage 2.2. R-07-48, Svensk Kärnbränslehantering AB.

    QR CODE
    :::