| 研究生: |
王志先 Chi-Tien Vuong |
|---|---|
| 論文名稱: |
M1.2微型擠壓絲攻製程參數之有限元素分析結果 |
| 指導教授: |
葉維磬
Wei-Ching Yeh 吳明昌 Ming-Chang Wu |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 機械工程學系 Department of Mechanical Engineering |
| 論文出版年: | 2022 |
| 畢業學年度: | 110 |
| 語文別: | 中文 |
| 論文頁數: | 128 |
| 中文關鍵詞: | 擠壓絲攻 、有限元素法 、中央合成設計 、變異數分析 、最佳化 |
| 外文關鍵詞: | Forming tap, Finite element method(FEM), Central composite design(CCD), Analysis of variance(ANOVA), Optimization |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本文首先驗證了Deform-3D有限元素法軟體應用於模擬M1.2擠壓絲攻加工之內螺紋成形的妥適性。選取下孔徑、轉速、定剪摩擦因子三個製程參數為品質因子,探討對攻絲過程中的內螺紋飽牙率與絲攻的最大扭矩兩個品質特性的影響。實驗設計採用面心式中央合成法設計共18組的實驗點。使用Minitab統計軟體對模擬的結果進行了變異數分析,進而建立最大扭矩與飽牙率的迴歸模型,並透過最佳化設計找出在限制飽牙率的條件下,最小化最大扭矩值的最佳製程參數水準值。為了驗證迴歸模型的準確性,使用了Deform-3D有限元素模擬的結果對迴歸模型進行檢驗,結果顯示最大扭矩與飽牙率的迴歸模型具有良好的預測能力。
In the present study, the validity of internal thread forming in the M1.2 forming tap process based on Deform-3D Finite Element Method(FEM) software was first verified. the three process parameters of bottom hole diameter, rotational speed and constant shear friction were identified control variables, and investigates the influence of the two responses of the thread fill rate and the maximum torque of the tap during the tapping process. and face-centered Central Composite Design (CCD) were used for the experimental design with 18 experimental runs. Analysis of variance(ANOVA) based on the simulation results established the regression model of maximum torque and thread fill rate by using Minitab software, and find out the optimal levels of process parameters that minimizes the maximum torque within a constrained region of thread fill rate by optimization design. in order to verify the accuracy of the regression model, the regression model was validated using the results of Deform-3D finite element simulation, the results showed that the regression model of the maximum torque and the thread fill rate had good predictive ability.
[1] Chowdhary, S., Ozdoganlar, O. B., Kapoor, S. G., DeVor, R. E.,“Modeling and analysis of internal thread forming”, technical papers-society of manufacturing engineers-all series-, 2002.
[2] Chowdhary, S., DeVor, R. E., Kapoor, S. G., “Modeling forces including elastic recovery for internal thread forming”, Journal of Manufacturing Science and Engineering, Vol 125, pp. 681-688, 2003.
[3] Warrington, C., Kapoor, S., DeVor, R., “Finite element modeling for tap design improvement in form tapping”, Journal of Manufacturing Science and Engineering, Vol 128, pp. 65-73, 2006.
[4] Fromentin, G., Bierla, A., Minfray, C., Poulachon, G., “An experimental study on the effects of lubrication in form tapping”, Tribology International, Vol 43, pp. 1726-1734, 2010.
[5] de Carvalho, A. O., Brandão, L. C., Panzera, T. H., Lauro, C. H., “Analysis of form threads using fluteless taps in cast magnesium alloy (AM60)”, Journal of Materials Processing Technology, Vol 212, pp. 1753-1760, 2012.
[6] Li, Y. Y., Zhao, S. D., “Finite element modeling and simulation for vibration-assisted extrusion tapping of internal thread”, AIP Conference Proceedings, Vol 1431, pp. 711-718, American Institute of Physics, 2012.
[7] 李永欽,「微絲攻於SUS 304攻牙之研究 Investigation of Tapping SUS 304 Using Mirco-Taps」,大華科技大學,碩士論文,民國103年。
[8] 周中偉,「微型無屑螺絲攻之幾何特徵設計最佳化與刀具壽命研究 Research on the Optimal Design of the Geometrical Features and the Tool life of the Micro Fluteless Taps」,國立臺灣科技大學,碩士論文,民國105年。
[9] Pereira, I. C., da Silva, M. B., “Study of the internal thread process with cut and form taps according to secondary characteristics of the process”, The International Journal of Advanced Manufacturing Technology, Vol 93, pp. 2357-2368, 2017.
[10] Czarnecki, H., Tubielewicz, K., Zaborski, A., Tagowski, M., Michalczuk, H., “FEM simulation of material strain in corner of forming tap during cold thread shaping”, Tribologia, (6), pp. 5-16, 2019.
[11] Liu, M., Ji, Z., Fan, R., Wang, X., “Finite element analysis of extrusion process for magnesium alloy internal threads with electromagnetic induction-Assisted heating and thread performance research”, Materials, Vol 13, 2170, 2020.
[12] 簡威容,「擠壓絲攻刀具幾何特徵之最佳化分析」,國立中央大學,碩士論文,民國109年。
[13] Hou, H. L., Zhang, G. P., Xin, C., Zhao, Y. Q., “Numerical Simulation and Process Optimization of Internal Thread Cold Extrusion Process”, Materials, Vol 13, 3960, 2020.
[14] Ribeiro Filho, S. L. M., Panzera, T. H., Brandão, L. C., Abrão, A. M., “Influence of cutting speed and tool geometry on form and machine tapping of carbon fibre-reinforced composites”, Journal of the Brazilian Society of Mechanical Sciences and Engineering, Vol 43, pp. 1-9, 2021.
[15] 曾暐智,「微型擠壓絲攻成型實驗暨加工參數最佳化分析」,國立中央大學,碩士論文,民國110年。
[16] 林聖鈞,「微型擠壓絲攻之幾何參數實驗設計與最佳化分析」,國立中央大學,碩士論文,民國110年。
[17] Warrington, C., Kapoor, S., DeVor, R., “Experimental investigation of thread formation in form tapping”, Journal of Manufacturing Science and Engineering, Vol 127, pp. 829-836, 2005.
[18] Ivanov, V., Kirov, V.,“Rolling of internal threads: Part 1”, Journal of Materials Processing Technology, Vol 72, pp. 214-220, 1997.
[19] Vázquez, J., Navarro, C., Domínguez, J., “Analysis of fretting fatigue initial crack path in Al7075-T651 using cylindrical contact”, Tribology International, Vol 108, pp. 87-94, 2017.
[20] 葉怡成,實驗計劃法:製程與產品最佳化,五南出版社,民國90年。
[21] Wu, M. C., Jian, W. R., Hsu, L. S., Tsao, C. C., “Optimization of tool geometric parameters for a small fluteless forming tap (FFT)” The International Journal of Advanced Manufacturing Technology, Vol 120, pp. 3437-3449, 2022.