| 研究生: |
蘇青珮 Ching-pei Su |
|---|---|
| 論文名稱: |
由血漿蛋白質吸附與血小板貼附行為探討多孔洞商業高分子薄膜之生物適應性質 Biocompatibility studies of commercial porous polymeric membranes by plasma protein adsorption and platelet adhesion |
| 指導教授: |
陳文逸
Wen-yih Chen |
| 口試委員: | |
| 學位類別: |
碩士 Master |
| 系所名稱: |
工學院 - 化學工程與材料工程學系 Department of Chemical & Materials Engineering |
| 畢業學年度: | 96 |
| 語文別: | 中文 |
| 論文頁數: | 116 |
| 中文關鍵詞: | 血液適應性 、生物適應性 、高分子膜 、蛋白質吸附 、血小板 |
| 外文關鍵詞: | porous polymeric membranes, biocompatibility, plasma protein adsorption, platelet adhesion |
| 相關次數: | 點閱:12 下載:0 |
| 分享至: |
| 查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要是利用在多孔性高分子膜表面,血漿蛋白質吸附與血小板貼附,與此兩者之間的相互關係,配合膜的親疏水性進行討論,以期能說明多孔膜的生體適應性,以及血漿中蛋白質吸附至多孔膜表面時,可能對血小板貼附所造成的影響。第一個部份為靜態地吸附蛋白質與血小板,並利用單一蛋白質在多孔膜上吸附後,對血小板貼附的影響;第二個部份則是進行多孔膜接觸血漿,在不同時間長短下的蛋白質吸附檢測,並在不同時間吸附蛋白質後進行血小板的貼附實驗。
在靜態蛋白質吸附實驗中,利用自配製之三種血漿主要蛋白質混合液(fibrinogen、human serum albumun與?-globulin)與離心全血後所得血小板貧乏血漿(PPP)進行蛋白質吸附,因蛋白質的競爭性吸附,與血漿中其他分子對蛋白質的取代作用(Vroman effect),故在兩種溶液中的蛋白質吸附量,除了容易改變構型與表面作用力較強的fibrinogen之外,並無明顯相關性。血小板吸附實驗則是以離心全血後得富含血小板溶液(PRP),貼附後以掃瞄式電子顯微鏡(SEM),觀察血小板的表面形貌與計數貼附量,而比較其與蛋白質吸附的結果,血小板的貼附量與fibrinogen吸附量呈一線性關係;另外在經過單一蛋白質吸附後,進行移除血漿蛋白質後所得之無血漿血小板溶液(serum-free platelet, SFP)的貼附,也可發現 fibrinogen對血小板貼附有正面的影響,因為血小板表面具有糖蛋白(GPIIb/IIIa),是為與fibrinogen結合的受器。
而隨時間進行的實驗,利用PPP進行吸附便可清楚觀察到,在平坦的玻璃蓋玻片表面上,蛋白質的吸附符合競爭性吸附的描述,但在表面呈纖維狀,較不平坦的多孔膜則無此現象。而在PPP隨時間吸附後進行SFP中血小板的貼附,觀察到在多孔膜上仍然會有血小板貼附達最大值後,隨時間減少的情形,與蛋白質吸附量量測的結果不同,推測原因為蛋白質在吸附於多孔膜表面後,發生了構型重排,雖保有被特定抗體專一辨識的性質,但已失去與血小板產生連結的功能。
Surface properties of poymeric biomaterials, such as specific functional groups, charges, and hydrophobicity, play important roles in modulating protein adsorption and cell adhesion on polymeric membranes. Besides, the competitive nature of protein adsorption makes the adsorption behavior and the induced cell adhesion complex. The competitive adsorption of proteins depends upon its molecular weight, bulk concentration of proteins and surface affinity to the proteins.
The major focus of this study is to investigate the influencing factors for plasma protein adsorption and platelet adhesion on the membrane filters having various kinds of chemical structure and pore size. We found that the adsorption amounts of fibrinogen and ?-globulin decreased while increase of that of human serum albumin (HSA) increased with the membrane hydrophobicity increasing. The human serum albumin was more adsorbed on the membranes from platelet-poor-plasma (PPP) than from mixed protein solution (MPS) consisting of human albumin, ?-globulin and fibrinogen. This tendency was extensively found on hydrophobic membranes compared to the hydrophilic membranes. The number of adhering platelets was lower on membranes with a decreased amount of adsorbed fibrinogen. Suppression of platelet adhesion could be elucidated by a reduction of protein adsorption, in particular of fibrinogen, which bound to the platelet membrane glycoprotein, GP IIb–IIIa. Time-dependent adsorption of fibrinogen indicates that Vroman effect, the displacement of fibrinogen, induced on the flat surface such as glass plates, but was not observed on the porous polymeric membranes.
1. Padera R. F., F. J. Schoen, Cardiovascular Medical Devices. In Biomaterials Science. An introduction to materials in medicine; Ratner B. D., A. S. Hoffman, F. J. Schoen,; J. E. Lemons, Eds.; Elsevier, Academic Press: San Diego, CA, 2004, 470-494.
2. Seal B. L., T.C. Otero, A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Material Science and Engineering: Reports, 2001, 34, 147-230.
3. Pizzoferrato A., G. Ciapetti, S. Stea, E. Cenni, C.R. Arciola, D. Granchi, L. Savarino, Cell culture methods for testing biocompatibility. Clinical Materials, 1994, 15, 173-190.
4. Kirkpatrick C. J., F. Bittinger, M. Wagner, H. Kohler, T.G. van Kooten, C.L. Klein, M. Otto, Current trends in biocompatibility testing. Proceeding of the Institution of Mechanical Engineering [H], 1998, 212, 75-84.
5. Ramakrishna S., J. Mayer, E. Wintermantel, K.W. Leong. Biomedical applications of polymer-composite materials: a review. Composites Science and Technology, 2001, 61, 1189-1224.
6. Nydegger U., R. Rieben, B. Lammle, Biocompatibility in transfusion medicine. Transfusion Science, 1996, 4, 481-488.
7. Kurtza S. M., J. N. Devine, PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials, 2007, 28, 4845-4869.
8. Oh S. H., J. H. Kim, K. S. Song, B. H. Jeon, J. H. Yoon, T. B. Seo, U. Namgung, I. W. Lee, J. H. Lee, Peripheral nerve regeneration within an asymmetrically porous PLGA/Pluronic F127 nerve guide conduit. Biomaterials, 2008, 29, 1601-1609.
9. Ye S. H., J. Watanabe, M. Takai, Y. Iwasaki, K. Ishihara, High functional hollow fiber membrane modified with phospholipid polymers for a liver assist bioreactor. Biomaterials, 2006, 27, 1955-1962.
10. Brown B. A., Hematology: Principles and Procedures, Philadelphia Lea & Febiger, 1993.
11. Rodrigues S. N., I. C. Gonc-alves, M. C. L. Martins, M. A. Barbosa, B. D. Ratner, Fibrinogen adsorption, platelet adhesion and activation on mixed hydroxyl-/methyl-terminated self-assembled monolayers. Biomaterials, 2006, 27, 5357-5367.
12. Savage B., Z. M. Ruggeri, Selective recognition of adhesive sites in surface-bound fibrinogen by glycoprotein-IIb-IIIa on nonactivated platelets. Journal of Biological Chemistry, 1991, 266, 11227–11233.
13. Tsai W. B., J. M. Grunkemeier, C. D. McFarland, T. A. Horbett, Platelet adhesion to polystyrene-based surfaces preadsorbed with plasmas selectively depleted in fibrinogen, fibronectin, vitronectin, or von Willebrand’s factor. Journal of Biomedical Materials Research, 2002, 60, 348-359.
14. Kottkemarchant K., J. M. Anderson, Y. Umemura, R. E. Marchant, Effect of albumin coating on the invitro blood compatibility of dacron arterial prostheses. Biomaterials, 1989, 10, 147-155.
15. Liu T. Y., W. C. Lin, L. Y. Huang, S. Y. Chen, M. C. Yang, Hemocompatibility and anaphylatoxin formation of protein-immobilizing polyacrylonitrile hemodialysis membrane. Biomaterials, 2005, 26, 1437-1444.
16. Jenney C.R., J. M. Anderson, Adsorbed serum proteins responsible for surface dependent human macrophage behavior. Journal of Biomedical Materials Research, 2000, 49, 435-447.
17. Brodbeck W. G., E. Colton, J. M. Anderson, Effects of adsorbed heat labile serum proteins and fibrinogen on adhesion and apoptosis of monocytes/macrophages on biomaterials. Journal of Material Science, Material in Medicine, 2003, 14, 671-675.
18. Jenney C. R., J. M. Anderson, Adsorbed IgG: a potent adhesive substrate for human macrophages. Journal of Biomedical Materials Research, 2000, 50, 281-290.
19. Hu W. J., J. W. Eaton, T. P. Ugarova, L. Tang, Molecular basis of biomaterial mediated foreign body reactions. Blood, 2001, 98, 1231-1238.
20. Moriau M., E. P. Lavenne, J. M. Scheiff, C. Col Debeys, The physiological mechanisms of haemostasis. In Blood Platelets; Hologramme Ed.: Neuilly-sur-Seine, 1988.
21. Knetsch M. L.W., Y. B. J. Aldenhoff, L. H. Koole, The effect of high-density-lipoprotein on thrombus formation on and endothelial cell attachement to biomaterial surfaces. Biomaterials, 2006, 27, 2813-2819.
22. Horbett T., The role of adsorbed proteins in tissue response to biomaterials. In: Biomaterials science: an introduction to biomaterials in medicine; Buddy D. Ratner, Allan S. Hoffman, Frederick J. Schoen, Jack E. Lemons, editors. San Diego, CA: Elsevier Academic Press; 2004, 237-246.
23. Xu L. C., C. A. Siedlecki, Effects of surface wettability and contact time on protein adhesion to biomaterial surfaces. Biomaterials, 2007, 28, 3273-3283.
24. Krishnan A., C. A. Siedlecki, E. A. Vogler, Mixology of Protein Solutions and the Vroman Effect. Langmuir, 2004, 20, 5071-5078
25. Cornelius R. M., J. Archambault, J. L. Brash, Identification of apolipoprotein A-I as a major adsorbate on biomaterial surfaces after blood or plasma contact. Biomaterials, 2002, 23, 3583-3587.
26. Lück M., B. R. Paulke, W. Schröder, T. Blunk, R. H. Müller, Analysis of plasma protein adsorption on polymeric nanoparticles with different surface characteristics. Journal of Biomedical Materials Research, 1998, 39, 478-485.
27. Higuchi A., K. Sugiyama, B. O. Yoon, M. Sakurai, M. Hara, M. Sumita, S. Sugawara, T. Shirai, Serum protein adsorption and platelet adhesion on pluronic™-adsorbed polysulfone membranes. Biomaterials, 2003, 24, 3235-3245.
28. Andersson J., K. N. Ekdahl, J. D. Lambris, B. Nilsson, Binding of C3 fragments on top of adsorbed plasma proteins during complement activation on a model biomaterial surface. Biomaterials, 2005, 26, 1477-1485.
29. Engvall E., P. Perlmann, Enzyme-linked immunosorbent assay (ELISA). Quantitative assay of immunoglobulin G. Immunochemistry, 1971, 8, 871-874.
30. Harrison P., Platelet function analysis. Blood Reviews, 2005, 19, 111-123
31. Gorbet M. B., M. V. Sefton, Biomaterial-associated thrombosis: roles of coagulation factors, complement, platelets and leukocytes. Biomaterials, 2004, 25, 5681-5703.
32. Calvete J. J., Clues for understanding the structure and function of a prototypic human integrin: the platelet glycoprotein IIb/IIIa complex. Journal of Thrombosis and Haemostasis, 1994, 72, 1-15.
33. Tamada Y., E. A. Kulik, Y. Ikada, Simple method for platelet counting. Biomateriols, 1995, 16, 259-261.
34. Blockmans D., H. Deckmyn, J. Vermylen, Platelet activation. Blood Reviews, 1995, 9, 143-156.
35. Zarbock A., R. K. Polanowska-Grabowska, K. Ley, Platelet-neutrophil-interactions: Linking hemostasis and inflammation. Blood Reviews, 2007, 21, 99-111.
36. Jy W., W. W. Mao, L. L. Horstman, J. Tao, Y. S. Ahn, Platelet microparticles bind, activate and aggregate neutrophils in vitro. Blood Cells, Molecules, and Diseases, 1995, 21, 217-31.
37. Itoh S., C. Susuki, T. Tsuji, Platelet activation through interaction with hemodialysis membranes induces neutrophils to produce reactive oxygen species. Journal of Biomedical Materials Research Part A, 2006, 77A, 294-303.
38. Ramström S., K. V. Öberg, F. Åkerström, C. Enström, T. L. Lindahl, Platelet PAR1 receptor density-Correlation to platelet activation response and changes in exposure after platelet activation. Thrombosis Research, 2008, 121, 681-688.
39. Anderson J. M., A. Rodriguez, D. T. Chang, Foreign body reaction to biomaterials. Seminars in Immunology, 2008, 20, 86-100.
40. Shen M., I. Garcia, R. V. Maier, T. A. Horbett, Effects of adsorbed proteins and surface chemistry on foreign body giant cell formation, tumor necrosis factor alpha release and procoagulant activity of monocytes. Journal of Biomedical Materials Research, 2004, 70A, 533-541.
41. Nathan C. F., Secretory products of macrophages. Journal of Clinical Investigation, 1987, 79, 319-326.
42. Camerer E, Kolsto A-B, and Pridz H, “Cell biology oftissue factor, the principal initiator ofcoagulation.” Thrombosis Research, 1996, 81, 1-41.
43. Smith J. A., Neutrophils, host defense, and inflammation; a double-edged sword. Journal of Leukocyte Biology, 1994, 56, 672-686.
44. Anderson J. M., K. M. Miller, Biomaterial biocompatibility and the macrophage. Biomaterials, 1984, 5, 5-10.
45. Shen M., T. A. Horbett, The effects of surface chemistry and adsorbed proteins on monocyte/macrophage adhesion to chemically modified polystyrene surfaces. Journal of Biomedical Materials Research, 2001, 57, 336-345.
46. Hunt J. A., G. Meijs, D. F. Williams, Hydrophilicity of polymersand soft tissue responses: a quantitative analysis. Journal of Biomedical Materiels Reseach, 1997, 36, 542-549.
47. Collier T. O., J. M. Anderson, Protein and surface effects on monocyte and macrophage adhesion, maturation, and survival. Journal of Biomedical Materials Research, 2002, 60, 487-496.
48. Iwasaki Y., S. Sawada, K. Ishihara, G. Khang, and H. B. Lee, Reduction of surface-induced inflammatory reaction on PLGA/MPC polymer blend. Biomaterials, 2002, 23, 3897-3903.
49. Klein E., The modern history of haemodialysis membranes and controllers. Nephrology, 1998, 4, 255-265.
50. Wang Z. G., L. S. Wan, Z. K. Xu, Surface engineerings of polyacrylonitrile-based asymmetric membranes towards biomedical applications: An overview. Journal of Membrane Science, 2007, 304, 8-23.
51. Czop J. K., K.F. Austen, Properties of glycans that activate the human alternative complement pathway and interact with the human monocyte beta-glucan receptor. Journal of Immunology, 1985, 135, 3388-3393.
52. Liu T. Y., W. C. Lin, L. Y. Huang, S. Y. Chen, M. C. Yang, Surface characteristics and hemocompatibility of PAN/PVDF blend membranes. Polymers for Advanced Technology, 2005, 16, 413-419.
53. Dai Z. W., F. Q. Nie, Z. K. Xu, Acrylonitrile-based copolymer membranes containing reactive groups: Fabrication dual-layer biomimetic membranes by the immobilization of biomacromolecules. Journal of Membrane Science 2005, 264, 20-26.
54. Higuchi A., H. Hashiba, R. Hayashi, B. O. Yoon, M. Sakurai, M. Hara, Serum protein adsorption and platelet adhesion on aspartic-acid-immobilized polysulfone membranes. Journal of Biomaterial Science, Polymer Edn, 2004, 15, 1051-1063.
55. Zhao C., X. Liu, M. Nomizu, N. Nishi, Blood compatible aspects of DNA-modified polysulfone membrane-protein adsorption and platelet adhesion. Biomaterials, 2003, 24, 3747-3755.
56. Lin D. J., D. T. Lin, T. H. Young, F. M. Huang, C. C. Chen, L. P. Cheng, Immobilization of heparin on PVDF membranes with microporous structures. Journal of Membrane Science, 2004, 245, 137-146.
57. Zhang Z., S. Chen, Y. Chang, S. Jiang, Surface Grafted Sulfobetaine Polymers via Atom Transfer Radical Polymerization as Superlow Fouling Coatings. Journal of Physical Chemistry B, 2006, 110, 10799-10804.
58. Park J. Y., M. H. Acar, A. Akthakul, W. Kuhlman, A. M. Mayes, Polysulfone-graft-poly(ethylene glycol) graft copolymers for surface modification of polysulfone membranes. Biomaterials, 2006, 27, 856-865.
59. Xua Z. K., F. Q. Nie, C. Qu, L. S. Wan, J. Wu, K. Yao, Tethering poly(ethylene glycol)s to improve the surface biocompatibility of poly(acrylonitrile-co-maleic acid) asymmetric membranes. Biomaterials, 2005, 26, 589-598.
60. Xu J., Y. Yuan, B. Shan, J. Shen, S. Lin, Ozone-induced grafting phosphorylcholine polymer onto silicone film grafting 2-methacryloyloxyethyl phosphorylcholine onto silicone film to improve hemocompatibility. Colloids and Surfaces B: Biointerfaces, 2003, 30, 215-223.
61. Krsko P., M, Libera, Biointeractive hydrogels. Materialtoday, 2005, 8, 36-44.
62. Vermette P., L. Meagher, Interactions of phospholipid- and poly(ethylene glycol)-modified surfaces with biological systems: relation to physico-chemical properties and mechanisms. Colloids and Surfaces B: Biointerfaces, 2003, 28, 153-198.
63. Ratner B. D., “Surface properties and surface characterization of materials" In Biomaterials Science. An introduction to materials in medicine; Ratner B. D., A. S. Hoffman, F. J. Schoen, J. E. Lemons, Eds.; Elsevier, Academic Press: San Diego, CA, 2004, 40-59.
64. Higuchi A., N. Aoki, T. Yamamoto, T. Miyazaki, H. Fukushima, T. M. Tak, S. Jyujyoji, S. Egashira, Y. Matsuoka, S. H. Natori, Temperature-induced cell detachment on immobilized pluronic surface. Journal of Biomedical Materials Research Part A, 2006, 79, 380-392.
65. Ishihara K., K. Fukumoto, Y. Iwasaki, N. Nakabayashi, Modification of polysulfone with phospholipid polymer for improvement of the blood compatibility. Part 2. Protein adsorption and platelet adhesion. Biomaterials, 1999, 20, 1553-1559.
66. Shen L. Q., Z. K. Xu, Z. M. Liu, Y. Y. Xu, Ultrafiltration hollow fiber membranes of sulfonated polyetherimide/polyetherimide blends: preparation, morphologies and anti-fouling properties. Journal of Membrane Science, 2003, 218, 279-293.
67. Rahimpour A., S. S. Madaeni, Polyethersulfone (PES)/cellulose acetate phthalate (CAP) blend ultrafiltration membranes: Preparation, morphology, performance and antifouling properties. Journal of Membrane Science, 2007, 305, 299-312.
68. Nimeri G., B. Lassen, C. G. Golander, U. Nilsson, H. Elwing, Adsorption of fibrinogen and some other proteins from blood plasma at a variety of solid surfaces. Journal of Biomaterial Science, Polymer Edition, 1994, 6, 573-583.
69. Knetsch M. L. W., Y. B. J. Aldenhoff, L. H. Koole, The effect of high-density-lipoprotein on thrombus formation on and endothelial cell attachement to biomaterial surfaces. Biomaterials, 2006, 27, 2813-2819.
70. 杉山開一朗, “—膜質吸着評価血液適合性.”博士論文, 日本成蹊大學工學研究所, 2003.
71. Toscano A., M. M. Santore, Fibrinogen Adsorption on Three Silica-Based Surfaces: Conformation and Kinetics. Langmuir, 2006, 22, 2588-2597.
72. Tunc S., M. F. Maitz, G. Steiner, L. V´azquez, M. T. Pham, R. Salzer, In situ conformational analysis of fibrinogen adsorbed on Si surfaces. Colloids and Surfaces B: Biointerfaces, 2005, 42, 219-225.
73. Chang Y., Y. J. Shih, R. C. Ruaan, A. Higuchi, W. Y. Chen, J. Y. Lai, Preparation of poly(vinylidene fluoride) microfiltration membrane with uniform surface-copolymerized poly(ethylene glycol) methacrylate and improvement of blood compatibility. Journal of Membrane Science, 2008, 309, 165-174.
74. Vroman L., Finding seconds count after contact with blood (and that is all I did). Colloids and Surfaces B: Biointerfaces, 2008, 62, 1-4.
75. Green R. J., M. C. Davies, C. J. Roberts, S. J. B. Tendler, Competitive protein adsorption as observed by surface plasmon resonance. Biomaterials, 1999, 20, 385-391.