跳到主要內容

簡易檢索 / 詳目顯示

研究生: 楊文智
Wen-chih Yang
論文名稱: 車載網路下結合路側單元輔助之訊息廣播機制
RSU-Assisted Message Broadcasting in Vehicular Ad Hoc Networks
指導教授: 胡誌麟
口試委員:
學位類別: 碩士
Master
系所名稱: 資訊電機學院 - 通訊工程學系
Department of Communication Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 56
中文關鍵詞: 車載網路路側單元車流密度廣播機制
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 現今以開車當作代步工具已經是普遍的現象,而駕駛人開車最擔心的莫過於碰上一些緊急情況,例如塞車或車禍。如果能將這些訊息提早利用廣播方式送給駕駛人,將可以讓他們有比較充足的時間作出反應。在車載環境中廣播訊息會遇到幾個問題,第一個問題是傳統行動網路常見的問題:隱藏節點和暴露節點,而在行動網路也提出了RTS/CTS機制防止因為這個問題而導致的封包碰撞,但在車載環境中,車輛節點移動性高,環境變動也比較快,如果用這方法,會浪費一些可以傳送的時間,本論文在這部份所採用的是一個時間點選擇一個車輛節點幫忙廣播封包,如此一來就可以不用擔心封包碰撞的問題,如何選擇會在本文敘述之。車載環境中還有第二個問題,就是車流密度不一的情況,有可能前後兩個車輛節點不在彼此的傳輸範圍內,導致後方的車輛節點無法收到封包,本論文把這情況視為車流密度過低,必須透過對向車道的車輛節點和路側單元輔助,將前方車輛節點的訊息帶給後方車輛節點,而會利用路側單元輔助是因為單純透過對向車道的車輛節點無法確定封包的抵達時間,擺設路側單元則不只可以有效提高抵達率也可以確保封包的抵達距離。本論文在路側單元的擺設方式也有提出一套方式,透過前面車流狀況的平均,可以得出後面路側單元該擺放在哪可以有比較好的效果。最後模擬工具採用VanetMobiSim結合Ns-2,利用VanetMobiSim產生的移動情況放入Ns-2進行模擬,分析指標分為二種:抵達相同所花的時間和轉送次數。


    On the road the driver’s primary concern is about the emergency information, for example, traffic jam and car accident. In case that emergency message can be broadcast to drivers as soon as possible, the drivers will have more time to react immediately. However, broadcasting in vehicular ad hoc networks (VANETs) has some problems. The first one is traditional in Mobile Ad Hoc Networks (MANETs): the hidden node and exposed node problem. To avoid this problem that will cause packet collision or delay, the RTS/CTS mechanism is used in MANETs But in VANETs, the vehicle nodes have high mobility and change its environmental location quickly. If using RTS/CTS, it will waste the time to transmit packets. In this paper, we choose only one node to broadcast messages at the same time. The second problem in VANETs is of traffic density. For instance, two nodes cannot exchange packet directly. It lets the rare node does not receive messages. And, we consider this case as low traffic density. In this paper, we forward the messages to the vehicle in opposite lane and Road Side Unit (RSU). We use RSU to improve transmission rate and transmission distance. For deployment of RSU, we also provide a mechanism. Through the average traffic density in the limited time, we can have better results. Finally, we use VanetMobiSim to create node mobilities and put this mobility into NS-2 for simulation. Finally, we have two performance metrics: the transmission time at the same distance and relay count.

    1 緒論 1.1 背景描述. . . . . . . . . . . . . . . . . . . . . . .1 1.2 技術問題. . . . . . . . . . . . . . . . . . . . . . .1 1.3 方法設計. . . . . . . . . . . . . . . . . . . . . . .3 1.4 模擬. . . . . . . . . . . . . . . . . . . . . . . . 4 2 相關研究 2.1 傳輸訊息的方式. . . . . . . . . . . . . . . . . . . . .5 2.1.1 Unicast . . . . . . . . . . . . . . . . . . . . . .5 2.1.2 Multicast . . . . . . . . . . . . . . . . . . . . .6 2.1.3 Broadcast . . . . . . . . . . . . . . . . . . . . 7 2.2 在不同環境下的廣播機制. . . . . . . . . . . . . . . . .8 2.2.1 車流密度高之環境. . . . . . . . . . . . . . . . . . 8 2.2.2 車流密度低之環境. . . . . . . . . . . . . . . . . . 10 3 環境和移動模型 3.1 環境. . . . . . . . . . . . . . . . . . . . . . . . .12 3.2 移動模型. . . . . . . . . . . . . . . . . . . . . . . 13 3.2.1 Car Following Model . . . . . . . . . . . . . . . 13 3.2.2 常用的Car Following Model . . . . . . . . . . . . .15 4 方法設計 4.1 假設和名詞解釋. . . . . . . . . . . . . . . . . . . . 17 4.2 車流密度高之環境. . . . . . . . . . . . . . . . . . . 18 4.3 車流密度低之環境. . . . . . . . . . . . . . . . . . . 20 4.4 路側單元配置. . . . . . . . . . . . . . . . . . . . .21 4.5 判斷訊息有效機制. . . . . . . . . . . . . . . . . . . 24 4.6 流程圖. . . . . . . . . . . . . . . . . . . . . . . 24 4.7 虛擬碼. . . . . . . . . . . . . . . . . . . . . . . 27 4.7.1 車輛節點. . . . . . . . . . . . . . . . . . . . . .27 4.7.2 路側單元. . . . . . . . . . . . . . . . . . . . . .29 5 模擬 5.1 模擬環境. . . . . . . . . . . . . . . . . . . . . . .31 5.2 訊息抵達相同距離所花費的時間. . . . . . . . . . . . . . .33 5.3 訊息轉送次數. . . . . . . . . . . . . . . . . . . . . 36 5.4 路側單元配置結果. . . . . . . . . . . . . . . . . . . .37 6 結論及未來展望. . . . . . . . . . . . . . . . . . . . . 38 參考文獻. . . . . . . . . . . . . . . . . . . . . . . . .39

    [1] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a mobile ad hoc network,” in Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, ser. MobiCom’99. ACM, 1999, pp. 151–162.
    [2] N. Wisitpongphan, F. Bai, P. Mudalige, V. Sadekar, and O. Tonguz, “Routing in sparse vehicular ad hoc wireless networks,” IEEE Journal on Selected Areas in Communications, vol. 25, no. 8, pp. 1538–1556, October 2007.
    [3] D. B. Johnson, D. A. Maltz, and Y.-C. Hu, “Dynamic source routing protocol for mobile ad hoc networks(dsr),” in IETF Internet Draft available at http://www3.ietf.org/proceedings/04mar/I-D/draft-ietf-manet-dsr-09.txt., April 2003.
    [4] C. E. Perkins, E. M. Belding-Royer, and S. R. Das, “Ad hoc on demand distance vector(aodv) routing,” in IETF RFC 3561, July 2003.
    [5] C. Lochert, H. Hartenstein, J. Tian, H. Fussler, D. Hermann, and M. Mauve,“A routing strategy for vehicular ad hoc networks in city environments,” in Proceedings of IEEE Intelligent Vehicles Symposium, June 2003, pp. 156–161.
    [6] J. Zhao and G. Cao, “Vadd: Vehicle-assisted data delivery in vehicular ad hoc networks,” in Proceedings of 25th IEEE International Conference on Computer Communications(INFOCOM), April 2006, pp. 1–12.
    [7] E. M. Royer and C. E. Perkins, “Multicast operation of the ad-hoc on-demand distance vector routing protocol,” in Proceedings of the 5th annual ACM/IEEE international conference on Mobile computing and networking, ser. MobiCom’99. ACM, 1999, pp. 207–218.
    [8] A. Bachir and A. Benslimane, “A multicast protocol in ad hoc networks intervehicle geocast,” in Proceedings of the 57th IEEE Semiannual Vehicular Technology Conference, vol. 4, April 2003, pp. 2456–2460.
    [9] C. Maihöfer, “A survey of geocast routing protocols,” IEEE Communications Surveys & Tutorials, vol. 6, no. 2, pp. 32–42, December 2004.
    [10] M.-T. Sun, W. chi Feng, T.-H. H. Lai, K. Yamada, H. Okada, and K. Fujimura,“Gps-based message broadcast for adaptive inter-vehicle communications,” in Proceedings of the 2000 International Conference on Parallel Processing, vol. 6, September 2000, pp. 2685–2692.
    [11] O. Tonguz, N. Wisitpongphan, F. Bai, P. Mudalige, and V. K. Sadekar, “Broadcasting in vanet,” in Proceedings of IEEE Mobile Networking for Vehicular Environments, May 2007, pp. 7–12.
    [12] N. Wisitpongpha, O. K. Tonguz, J. S. Parikh, P. Mudalige, F. Bai, and V. Sadekar, “Broadcast storm mitigation techniques in vehicular ad hoc networks,”IEEE Wireless Communications, vol. 14, no. 6, pp. 84–94, December 2007.
    [13] L. Briesemeister and G. Hommel, “Role-based multicast in highly mobile but sparsely connected ad hoc networks,” in Proceedings of the 1st ACM international symposium on Mobile ad hoc networking & computing, ser. MobiHoc ’00, 2000, pp. 45–50.
    [14] T. Spyropoulos, K. Psounis, and C. S. Raghavendra, “Spray and wait: an efficient routing scheme for intermittently connected mobile networks,” in Proceedings of the 2005 ACM SIGCOMM workshop on Delay-tolerant networking, ser. WDTN ’05, 2005, pp. 252–259.
    [15] I. Stojmenovic, M. Seddigh, and J. Zunic, “Dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks,” IEEE Transactions on Parallel and Distributed Systems, vol. 13, no. 1, pp. 14–25, August 2002.
    [16] I. Stojmenovic, “Comments and corrections to ”dominating sets and neighbor elimination-based broadcasting algorithms in wireless networks”,” IEEE Transactions on Parallel and Distributed Systems, vol. 15, no. 11, pp. 1054–1055, November 2004.
    [17] J. Harri, F. Filali, and C. Bonnet, “Mobility models for vehicular ad hoc networks: a survey and taxonomy,” IEEE Communications Surveys Tutorials, vol. 11, no. 4, pp. 19–41, December 2009.
    [18] M. Trieber, A. Hennecke, and D. Helbing, “Congested traffic states in empirical observations and microscopic simulations,” Phys. Rev. E, vol. 62, pp. 1805–1824, August 2000.
    [19] M. Brackstone and M. McDonald, “Car-following: a historical review,” Transportation Research Part F: Traffic Psychology and Behaviour, vol. 2, no. 4, pp. 181 – 196, December 1999.
    [20] S. Panwai and H. Dia, “Comparative evaluation of microscopic car-following behavior,” IEEE Transactions on Intelligent Transportation Systems, vol. 6, no. 3, pp. 314–325, September 2005.
    [21] D. C. Gazis, R. Herman, and R. W. Rothery, “Nonlinear follow the leader models of traffic flow,” Operations Research, pp. 545–567, August 1961.
    [22] R. E. Chandler, R. Herman, and E. W. Montroll, “Traffic dynamics:studies in car following,” Operations Research, vol. 6, no. 2, pp. 165–184, 1958.
    [23] E. Kometani and T. Sasaki, “Dynamic behaviour of traffic with a non-linear spacing–speed relationship,” Theory Traffic Flow, Research Laboratories, General Motors, p. 105–109, 1959.
    [24] R. Wiedemann, “Simulation des straenverkehrsflusses,” Schriftenreihe Heft 8, Institute for Transportation Science, 1974.
    [25] S. Kikuchi and P. Chakroborty, “Car following model based on a fuzzy inference system,” Transp. Res. Rec, vol. 1365, p. 82–91, 1992.
    [26] S. Krauss, P. Wagner, and C. Gawron, “Metastable states in a microscopic model of traffic flow,” Physical Review E, vol. 55, pp. 55–97, May 1997.
    [27] K. Nagel and M. Schreckenberg, “A cellular automaton model for freeway traffic,”Journal de Physic I, pp. 2221–2229, 1992.
    [28] P. G. Gipps, “A behavioral car following model for computer simulation,”Transportation Research Board 15, p. 105–111, 1981.
    [29] P. Li, X. Huang, Y. Fang, and P. Lin, “Optimal placement of gateways in vehicular networks,” IEEE Transactions on Vehicular Technology, vol. 56, no. 6, pp. 3421–3430, 2007.

    QR CODE
    :::