跳到主要內容

簡易檢索 / 詳目顯示

研究生: 王銘澤
Ming-Ze Wang
論文名稱: 生質燃料衍生飛灰與底渣特性分析及再利用評估
指導教授: 黃偉慶
Wei-Hsing Huang
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 土木工程學系
Department of Civil Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 190
中文關鍵詞: 生質燃料飛灰生質燃料底渣資源化再利用
外文關鍵詞: solid biofuel fly ash, solid biofuel bottom ash, resource reuse
相關次數: 點閱:11下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要是針對國內設有生質燃料鍋爐廠,燃燒生質燃料所副產之事業廢棄物,進行資源化再利用技術研究。首先依據現今公共工程施工綱要規範及國家標準CNS規範圈定資源化再利用導向及研究範疇,然後根據鍋爐燃料分類選定五種類之生質/廢棄資源燃料,其中包含(1)塊煤(2)廢木材(3)木質顆粒(4)棕櫚殼(5)廢棄菇包等,並依據上述五種類燃料所產生之生質燃料飛灰及生質燃料底渣進行土木材料相關之物理性質及化學性質基本檢試驗,以探討其材料之特性。依據其基本檢試驗結果及材料之性質特性,採用不同之再利用可行技術並作合適性評估,以達成資源循環之最大效益。
    本研究所採用土木材料再利用可行技術包含(1)控制性低強度填充材料(CLSM)、(2)人工粒料(冷結法)及(3)高壓混凝土地磚等再利用用途。於符合環保、工程法規之基礎上,經由上述材料物、化性質及工程特性之掌握,研析可行之再利用技術,並綜合評估生質燃料飛灰及底渣資源化再利用導向及效益。
    實驗結果得知,本研究使用之生質燃料飛灰,具有吸水率高、殘碳量高之特性,取代於水泥砂漿之水泥有緩凝及強度下降的影響,因此利用研磨技術使生質燃料飛灰顆粒間孔隙減少,於取代水泥製作水泥砂漿時,需水量能有效減少,並提高強度活性指數,使得生質燃料飛灰能提升再利用價值;而生質燃料底渣再利用於CLSM時因顆粒大結構鬆散,吸水率又高,所以導致抗壓強度未達規範值,因此建議顆粒大底渣應破碎後再用於土木工程材料上。


    This paper is to investigate the resource’s reuse technelogy aiming at the waste produced by the domestic solid biofuel boiler plants and burning solid bioful factories. First, it will focus on the resource recycling and research areas according to the norms of public works and the national CNS norms. Then, five types of biomass and waste fuel which contain lump coal , waste wood , wood pellets , palm shell , waste mushroom packages…etc. are selected according to the boiler fuel classfication . After that, based on the solid biofuel fly ash and solid biofuel bottom ash produced by the above five types of fuel, this study will conduct basic physical property and chemical property testing between civil materials to inrestigate the characteristics of the materials. In order to achieve the maximum benefit of resource cycle , this study will adopt the different reuseable technologies and conduct the appropriate evaluation according to the basic test results and the nature of the materials.
    The technologies used to proceed the civil material reuse conducted in this study include the “Controlled Low Strength Material(CLSM)”, “artificial aggregate” and the “Compressed concrete paving units”. To comply with the environment protection stondard and the engineering laws and regulations, this study will explore the reuse technologies regarding to the above materials , chemical property and the engineering characteristics. In addition it will evaluate the reuse of the solid biofuel fly ash and bottom ash and its benefits.
    The results show that the solid bofuel ash used in this study has the characteristics of high water absorbency and high residual caarbon. The cement mixed with cement mortar has the effect of delaying the condensation and decreasing the strength . There fore the use of grinding technalgy can make the solid biofuel fly ash increase its reuse value Moreover, it can be applied on the civil engineering materials after crushing due to the large particles and lose structure of solid biofuel bottom ash.

    第一章 緒論 1 1.1 研究動機 1 1.2 研究目的 1 1.3 研究方法及內容 2 1.4 名詞解釋 3 第二章 文獻回顧 5 2.1 鍋爐產業狀況 5 2.1.1 鍋爐種類 5 2.1.2 生質燃料種類 7 2.2 燃煤飛灰 10 2.2.1 燃煤飛灰來源 10 2.2.2 燃煤飛灰基本性質 12 2.3 生質燃料衍生灰渣廢棄物 14 2.3.1 國內生質物種類 14 2.3.2 國外木質燃料灰基本性質 15 2.2.3 棕櫚油燃料灰(POFA)基本性質 22 2.4 棕櫚油燃料灰在處理成效 29 2.5 資源化再利用 32 2.5.1 控制性低強度回填材料(CLSM) 32 2.5.2 人造粒料(冷結法) 40 2.5.3 混凝土製品(高壓混凝土地磚) 42 第三章 實驗材料及方法 45 3.1 實驗材料 45 3.2 實驗設備及儀器 51 3.3 實驗流程及方法 60 3.3.1 實驗流程 60 3.3.2 實驗方法 64 3.3.3 再利用之設計配比 70 第四章 結果與分析 75 4.1 生質燃料飛灰及底渣 76 4.1.1 生質燃料飛灰之特性 77 4.1.2 生質燃料飛灰之微觀試驗 83 4.1.3 生質燃料底渣之特性 89 4.2 生質燃料飛灰再處理成效 97 4.2.1 電廠燃煤飛灰與生質燃料飛灰特性比較 97 4.2.2 處理過生質燃料飛灰分析比較 98 4.2.3 生質燃料飛灰研磨前後微觀分析 106 4.3 鍋爐底渣再利用於控制性低強度回填材料(CLSM) 118 4.3.1 CLSM新拌性質試驗 118 4.3.2 CLSM硬固性質試驗 121 4.3.3 CLSM新拌性質試驗外觀 123 4.4 生質燃料飛灰再利用於人造粒料(冷結法) 123 4.4.1 人造粒料外觀 124 4.4.2 生質燃料飛灰製成人造粒料比重及吸水率 124 4.4.3 人造粒料品質評估 125 4.5 生質燃料飛灰及底渣再利用於高壓混凝土地磚 127 4.5.1 高壓混凝土地磚外觀 127 4.5.2 高壓混凝土地磚之工程性質 127 4.6 生質燃料灰渣綜合評估 133 4.6.1 生質燃料飛灰探討分析 133 4.6.2 生質燃料底渣探討分析 135 第五章 結論與建議 137 5.1 結論 137 5.2 建議 139 參考文獻 141 附錄一 149 附錄二 151 附錄三 153 附錄四 155 附錄五 157 附錄六 159

    張慶源、李元陞、吳照雄、林法勤、謝哲隆、陳奕宏、張家驥,生質燃料應用評估與示範,行政院環境保護署環境檢驗所,(2013)。
    萬皓鵬.李宏台,廢棄物衍生燃料的使用(2010)。
    台灣電力公司:http://www.taipower.com.tw。
    王世賢,「焚化爐底碴及廢混凝土塊應用於控制性低強度材料工程及環境效益評估之研究」,碩士論文,國立中央大學土木工程研究所,桃園(2005)。
    徐登文,「燃煤飛灰與底灰應用於CLSM之早強性質研究」,碩士論文,國立中興大學,台中(2002)。
    紀宗男,「淨水污泥餅資源化應用於管溝回填材料之研究」,碩士論文,淡江大學,台北(2003)。
    翁頤慶,「造粒-乾燥技術」,醫藥工程設計,第二期,(1998)。
    黃華照,「偏高嶺土輕質粒料混凝土應用於海洋工程」,碩士論文,國立中山大學,高雄(2006)。
    余岳峰,「下水污泥焚化灰渣燒成輕質粒料特性之研究」,碩士論文,國立中央大學環境工程研究所,桃園(2000)。
    許桂銘,「飛灰輕質粒料製程及性質之研究」,碩士論文,國立台灣工業技術學院,台北(1991)。
    曾仕文,「電弧爐還原碴應用於控制性低強度材料及其安定化成效評估研究」,碩士論文,國立中央大學,中壢(2013)。
    Rajamma, R., Bell, R.J., Tarelho, L.A.C., Allen, G.C., Labrincha, J.A., and Ferreira, V.M. (2009), “Characterisation and use of biomass fly ash in cement-based materials.”Journal of Hazardous Materials, Vol.172, pp. 1049-1060.
    Abdullahi, M. (2006), “Characteristics of Wood ASH/OPC Concrete.” Civil Engineering Department, Federal University of Technology, P.M.B. 65.
    Udoeyo, F.F., Lnyang, H., Young, D.T., and Oparadu, E.E. (2006), “Ash from timber waste as cement replacement.” Cement Concr Compos, Vol. 18, pp. 605-611.
    Naik, T.R., Kraus, R.N., and Siddique, R. (2003), “CLSM containing mixture of coal ash and a new pozzolanic material.” ACI Mater J, Vol. 100, pp. 208-215.
    Vassilev, S.V., Baxter, D., Andersen, L.K., and Vassileva, C.G. (2010), “An overview of the chemical composition of biomass.” Fuel, Vol. 89, pp. 913-933.
    Cuenca, J., Rodriguez, J., Martin-Morales, M., Sanchez-Roldan, Z., and Zemorano, M. (2013), “Effects of olive residue biomass fly ash as filler in self-compacting concrete.” Construction and Building Materials, Vol. 40, pp. 702-709.
    Ellinwa, A.U., Ejeh, S.P., and Akapabio, I.O. (2005), “Effects of incorporation of saw dust incineration fly ash in cement pastes and mortars.” J Asian Architect Build Eng, Vol. 3, pp. 1-7.
    Ellinwa, A.U., and Mahmood, Y.A. (2002), “Ash from timber waste as cement replacement.” Cement Concr Compos, Vol.24, pp. 219-222.
    Udoeyo, F.F., and Dashibil, P.U. (2002), “Sawdust ash as concrete material.” J Mater Civ Eng, Vol. 14, pp.173-176.
    Etiegni, L., and Campbell, A.G. (1991), “Physical and chemical characteristics of wood ash.” Bioresource Technol, Vol. 37, pp. 173-178.
    Sklivaniti, V., Tsakiridis, P.E., Katsiotis, N.S., Velissariou, D., Pistofidis, N., Papageorgiou, D., and Beazi, M. (2017), “Valorisation of woody biomass bottom ash in Portland cement: A characterization and hydration study.” Journal of Environmental Chemical Engineering, Vol.5, pp. 205-213.
    Lim, N.H.A.S., Ismail, M.A, Lee, H.S., Hussin, M.W., Sam, R.M., and Samadi, M. (2015), “The effects of high volume nano palm oil fuel ash on microstructure properties and hydration temperature of mortar.” Construction and Building Materials, Vol. 93, pp. 29-34.
    Awal, A.S.M.A., and Shehu, I.A. (2013), “Evaluation of heat of hydration of concrete containing high volume palm oil fuel ash.” Fuel, Vol. 105, pp. 728-731.
    Tangchirapat, W., Khamklai, S., and Jaturapitakkul, C. (2012), “Use of ground palm oil fuel ash to improve strength, sulfate resistance, and water permeability of concrete containing high amount of recycled concrete aggregates.” Materials and Design, Vol. 41, pp. 150-157.
    Johari, M.A.M., Zeyad, A.M., Bunnori, N.M., and Ariffin, K.S. (2012), “Engineering and transport properties of highstrength green concrete containing high volume of ultrafine palm oil fuel ash.” Construction and Building Materials, Vol. 30, pp. 281-288.

    Sinsiri, T., Kroehong, W., Jaturapitakkul, C., and Chindaprasirt, P. (2012), “Assessing the effect of biomass ashes with different finenesses on the compressive strength of blended cement paste.” Materials and Design, Vol. 42, pp. 424-433.
    Awal, A.S.M.A., and Shehu, I.A. (2011), “Properties of Concrete Containing High Volum Palm Oil Fuel Ash.” Malaysian Journal of Civil Engineering, Vol. 23, pp. 54-66.
    Safiuddin, M., Md.Isa, M.H., and Jumaat, M.Z. (2011), “Fresh Properties of Self-consolidating Concrete Incorporating Palm Oil Fuel Ash as a Supplementary Cementing Material.” Journal of Science Chiang Mai, Vol. 38, pp.389-404.
    Jaturapitakkul, C., Tangpagasit, J., Songmue, S., and Kiattikomol, K. (2011), “Filler effect and pozzolanic reaction of ground palm oil fuel ash.” construction and Building Materials, Vol. 25, pp. 4287-4293.
    Awal, A.S.M.A., and Hussin, M.W. (2011), “Effect of Palm Oil Fuel Ash in Controlling Heat of Hydration of Concrete.” Procedia Engineering, Vol. 14, pp. 2650-2657.
    Chandara, C., Sakai, E., Azizli, K.A.M., Ahmad, Z.A., and Hashim, S.F.S. (2010), “The effect of unburned carbon in palm oil fuel ash on fluidity of cement pastes containing superplasticizer.” Construction and Building Materials, Vol. 24, pp. 1590-1593.
    Kroehong, W., Sinsiri, T., and Jaturapitakkul, C. (2011), “Effect of Palm Oil Fuel Ash Fineness on Packing Effect and Pozzolanic Reaction of Blended Cement Paste.” Procedia Engineering, Vol. 14, pp. 361-369.
    Sata, V., Jaturapitakkul, C., and Rattanashotinunt, C. (2010), “Compressive Strength and Heat Evolution of Concretes Containing Palm Oil Fuel Ash.” Journal of Materials in Civil Engineering, Vol. 22, pp. 1033.1038.
    Chindaprasirt, P., and Rukzon, S. (2009), “Pore Structure Changes of Blended Cement Pastes Containing Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash Caused by Carbonation.” Journal of Materials in Civil Engineering, Vol. 21, pp. 666-671.
    Tangchirapat, W., Jaturapitakkul, C., and Kiattikomol, K. (2009), “Compressive Strength and Expansion of Blended Cement Mortar Containing Palm Oil Fuel Ash.” Journal of Materials in Civil Engineering, Vol. 21, pp. 426-431.
    Rukzon, S., and Chindaprasirt, P. (2009), “An Experimental Investigation of the Carbonation of Blended Portland Cement Palm Oil Fuel Ash Mortar in an Indoor Environment .” Indoor and Built Environment, Vol. 18, pp. 313-318.
    Chindaprasirt, P., Homwuttiwong, S., and Jaturapitakkul, C. (2007), “Strength and water permeability of concrete containing palm oil fuel ash and rice husk–bark ash.” construction and Building Materials, Vol. 21, pp. 1492-1499.
    Sata, V., Jaturapitakkul, C., and Kiattikomol, K. (2004), “Utilization of Palm Oil Fuel Ash in High-Strength Concrete.” Journal of Materials in Civil Engineering, Vol. 16, pp. 623-628.

    Sujivorakul, C., Jaturapitakkul, C., ASCE, A.M., and Taotip, A. (2011), “Utilization of Fly Ash, Rice Husk Ash, and Palm Oil Fuel Ash in Glass Fiber–Reinforced Concrete.” Journal of Materials in Civil Engineering, Vol. 23, pp. 1281-1288.
    Chindaprasirt, P., Chotetanorm, C., and Rukzon, S. (2011), “Use of Palm Oil Fuel Ash to Improve Chloride and Corrosion Resistance of High-Strength and High-Workability Concrete.” Journal of Materials in Civil Engineering, Vol. 23, pp. 499-503.
    Altwair, N.M., Johari, M.A.M., and Hashim, S.F.S. (2011), “Strength Activity Index and Microstructural Characteristics of Treated Palm Oil Fuel Ash.” International Journal of Civil & Environmental Engineering, Vol. 11, pp. 100-107.
    Ariffin, M.A.M., Hussin, M.W., and Bhutta, M.A.R. (2011), “Mix Design and Compressive Strength of Geopolymer Concrete containing Blended Ash from Agro-Industrial Wastes.” Advanced Materials Research, Vol. 339, pp. 452-457.
    Tangchirapat, W., and Jaturapitakkul, C. (2010), “Strength, drying shrinkage, and water permeability of concrete incorporating ground palm oil fuel ash.” Cement and Concrete Composites, Vol. 32, pp. 767-774.
    Bamaga, S., Ismail, M.A., and Hussin, M.W. (2010), “Chloride Resistance of Concrete Containing Palm Oil Fuel Ash.” Concrete Research Letters, Vol. 1, pp. 158-166.

    Awal, A.S.M.A., and Nguong, S.K. (2010), “A Sort-term Investigation on High Volume Palm Oil Fuel Ash (POFA) Concrete.” 35th Conference on OUR WORLD IN CONCRETE & STRUCTURES. Singapore2010.
    Tangchirapat, W., Jaturapitakkul, C., and Chindaprasirt, P. (2009), “Use of palm oil fuel ash as a supplementary cementitious material for producing high-strength concrete.” Construction and Building Materials, Vol. 23, pp. 2641-2646.
    Hussin, M.W., Ismail, M.A., Budiea, A., and Muthusamy, K. (2009), “Durability of High Strength Conctere Containing Palm Oil Fuel Ash of Different Fineness.” Malaysian Journal of Civil Engineering, Vol. 21, pp. 180-194.
    Chindaprasirt, P., Rukzon, S., and Sirivivatnanon, V. (2008), “Resistance to chloride penetration of blended Portland cement mortar containing palm oil fuel ash, rice husk ash and fly ash.” Construction and Building Materials, Vol. 22, pp. 932-938.
    Tangchirapat, W., Saeting, T., Jaturapitakkul, C., Kiattikomol, K., and Siripanichgorn, A. (2007), “Use of waste ash from palm oil industry in concrete.” Waste Management, Vol. 27, pp. 81-88.
    Sata, V., Jaturapitakkul, C., and Kiattikomol, K. (2007), “Influence of pozzolan from various by-product materials on mechanical properties of high-strength concrete.” Construction and Building Materials, Vol. 21, pp. 1589-1598.
    Jaturapitakkul, C., Kiattikomol, K., Tangchirapat, W., and Saeting, T. (2007), “Evaluation of the sulfate resistance of concrete containing palm oil fuel ash.” Construction and Building Materials, Vol. 21, pp. 1399-1405.
    Abdullah, K., Hussin, M.W., Zakaria, F., Muhamad, R., and Hamid, Z.A. (2006), “POFA : A Potential Partial Cement Replacement Material in Aerated Concrete.” 6th Asia-Pacific Structural Engineering and Construction Conference. Kuala Lumpur, pp. 132-140.
    Awal, A.S.M.A., and Hussin, M.W.(1997), “The effectiveness of palm oil fuel ash in preventing expansion due to alkali-silica reaction.” Cement and Concrete Composites, Vol. 19, pp. 367-372.
    Noorvand, H., Ali, A.A.A., Demirboga, R., Noorvand, H., and Farzadnia, N. (2013), “Physical and chemical characteristics of unground palm oil fuel ash cement mortars with nanosilica.” Construction and Building Materials, Vol. 48, pp. 1104-1113
    Rafieizonooz, M., Mirza, J., Salim, M.R., Hussin, M.W., and Khankhaje, E.(2016), “Investigation of coal bottom ash and fly ash in concrete as replacement for sand and cement.” Construction and Building Materials, Vol.116, pp. 15-24.
    Ukrainczyk, N., Ukrainczyk, M., Sipusic, J., and Matusinovic, T.(2006), “XRD and TGA investigation of hardened cement paste degradation.” 11th Conference on Material, Processes, Friction and Wear, MATRIB’06, Vela Luka, pp. 22-24.

    QR CODE
    :::